Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
935
result(s) for
"Martens, John A."
Sort by:
Reviews: Scientific Discoveries and Soviet Law
1986
John A. Martens reviews \"Scientific Discoveries and Soviet Law: A Sociohistorical Analysis,\" by James M. Swanson.
Book Review
Pan-cancer landscape of homologous recombination deficiency
2020
Homologous recombination deficiency (HRD) results in impaired double strand break repair and is a frequent driver of tumorigenesis. Here, we develop a genome-wide mutational scar-based pan-cancer Classifier of HOmologous Recombination Deficiency (CHORD) that can discriminate
BRCA1
- and
BRCA2
-subtypes. Analysis of a metastatic (
n
= 3,504) and primary (
n
= 1,854) pan-cancer cohort reveals that HRD is most frequent in ovarian and breast cancer, followed by pancreatic and prostate cancer. We identify biallelic inactivation of
BRCA1
,
BRCA2
,
RAD51C
or
PALB2
as the most common genetic cause of HRD, with
RAD51C
and
PALB2
inactivation resulting in
BRCA2
-type HRD. We find that while the specific genetic cause of HRD is cancer type specific, biallelic inactivation is predominantly associated with loss-of-heterozygosity (LOH), with increased contribution of deep deletions in prostate cancer. Our results demonstrate the value of pan-cancer genomics-based HRD testing and its potential diagnostic value for patient stratification towards treatment with e.g. poly ADP-ribose polymerase inhibitors (PARPi).
Cancers deficient in homologous recombination can benefit from treatment with poly ADP-ribose polymerase (PARP) inhibitors. Here, the authors generated a classifier that can predict homologous recombination deficiency from genomic data and suggest several cancer types that may benefit from PARP inhibitor treatment.
Journal Article
MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines
by
Jager, Agnes
,
Uhr, Katharina
,
Prager-van der Smissen, Wendy J. C.
in
Antineoplastic Agents - pharmacology
,
Biochemistry
,
Bioindicators
2019
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. In this way they might influence whether a cell is sensitive or resistant to a certain drug. So far, only a limited number of relatively small scale studies comprising few cell lines and/or drugs have been performed. To obtain a broader view on miRNAs and their association with drug response, we investigated the expression levels of 411 miRNAs in relation to drug sensitivity in 36 breast cancer cell lines. For this purpose IC50 values of a drug screen involving 34 drugs were associated with miRNA expression data of the same breast cancer cell lines. Since molecular subtype of the breast cancer cell lines is considered a confounding factor in drug association studies, multivariate analysis taking subtype into account was performed on significant miRNA-drug associations which retained 13 associations. These associations consisted of 11 different miRNAs and eight different drugs (among which Paclitaxel, Docetaxel and Veliparib). The taxanes, Paclitaxel and Docetaxel, were the only drugs having miRNAs in common: hsa-miR-187-5p and hsa-miR-106a-3p indicative of drug resistance while Paclitaxel sensitivity alone associated with hsa-miR-556-5p. Tivantinib was associated with hsa-let-7d-5p and hsa-miR-18a-5p for sensitivity and hsa-miR-637 for resistance. Drug sensitivity was associated with hsa-let-7a-5p for Bortezomib, hsa-miR-135a-3p for JNJ-707 and hsa-miR-185-3p for Panobinostat. Drug resistance was associated with hsa-miR-182-5p for Veliparib and hsa-miR-629-5p for Tipifarnib. Pathway analysis for significant miRNAs was performed to reveal biological roles, aiding to find a potential mechanistic link for the observed associations with drug response. By doing so hsa-miR-187-5p was linked to the cell cycle G2-M checkpoint in line with this checkpoint being the target of taxanes. In conclusion, our study shows that miRNAs could potentially serve as biomarkers for intrinsic drug resistance and that pathway analyses can provide additional information in this context.
Journal Article