Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
58 result(s) for "Martin-Luther-Universität Halle Wittenberg - Martin-Luther-University Halle Wittenberg (MLU)"
Sort by:
The impact of tree diversity on different aspects of insect herbivory along a global temperature gradient - A meta-analysis
Forests with higher tree diversity are often assumed to be more resistant to insect herbivores but whether this effect depends on climatic conditions is so far poorly understood. In particular, a forest's resistance to herbivory may depend on mean annual temperature (MAT) as a key driver of plant and insect phenology. We carried out a global meta-analysis on regression coefficients between tree diversity and four aspects of insect herbivory, namely herbivore damage, abundance, incidence rate and species richness. To test for a potential shift of tree diversity effects along a global gradient of MAT we applied mixed-effects models and estimated grand mean effect sizes and the influence of MAT, experimental vs. observational studies and herbivores diet breadth. There was no overall effect of tree diversity on the pooled effect sizes of insect herbivore damage, abundance and incidence rate. However, when analysed separately, we found positive grand mean effect sizes for herbivore abundance and species richness. For herbivore damage and incidence rate we found a significant but opposing shift along a gradient of MAT indicating that with increasing MAT diversity effects on herbivore damage tend towards associational resistance whereas diversity effects on incidence rates tend towards associational susceptibility. Our results contradict previous meta-analyses reporting overall associational resistance to insect herbivores in mixed forests. Instead, we report that tree diversity effects on insect herbivores can follow a biogeographic pattern calling for further in-depth studies in this field.
A greener path for the EU common agricultural policy
It's time for sustainable, environmental performance The Common Agricultural Policy (CAP) of the European Union (EU) is one of the world's largest agricultural policies and the EU's longest-prevailing one. Originally focused mostly on supporting production and farm income, the CAP has progressively integrated instruments to support the environment. Nonetheless, there is considerable agreement among EU citizens that the CAP still does not do enough to address ongoing environmental degradation and climate change (92% of nonfarmers, 64% of farmers) ( 1 ). In May and June 2018, the European Commission (EC) published the financial plan and legislative proposal for the CAP post-2020 ( 2 ), prompting numerous proposed amendments that the newly elected European Parliament (EP) will now have to consider. With an eye toward the next and final reform stages, including budget discussions and “trilogue” negotiations between the EC, the Council, and the EP to begin in autumn 2019, we examine whether the proposed post-2020 CAP can address key sustainability issues and meet societal demands for higher environmental performance.
Structural variation in the pangenome of wild and domesticated barley
P an genomes are collections of annotated genome sequences of multiple individuals of a species 1 . The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants 2 . Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes. An expanded catalogue of sequence variation in the crop includes structurally complex loci that are rich in gene copy number variation. To demonstrate the utility of the pangenome, we focus on four loci involved in disease resistance, plant architecture, nutrient release and trichome development. Novel allelic variation at a powdery mildew resistance locus and population-specific copy number gains in a regulator of vegetative branching were found. Expansion of a family of starch-cleaving enzymes in elite malting barleys was linked to shifts in enzymatic activity in micro-malting trials. Deletion of an enhancer motif is likely to change the developmental trajectory of the hairy appendages on barley grains. Our findings indicate that allelic diversity at structurally complex loci may have helped crop plants to adapt to new selective regimes in agricultural ecosystems.Reliable crop yields fuelled the rise of human civilizations. As people embraced a new way of life, cultivated plants, too, had to adapt to the needs of their domesticators. There are different adaptive requirements in a wild compared with an arable habitat. Crop plants and their wild progenitors differ in how many vegetative branches they initiate or how many seeds or fruits they produce and when. A case in point is barley (Hordeum vulgare): in six-rowed forms of the crops, thrice as many grains set as in the ancestral two-rowed forms. This change was brought about by knockout mutations 3 of a recently evolved regulator 4 of inflorescence development. Consequently, six-rowed barleys came to predominate in most barley-growing regions 5 . Taking a broader view of the environment as a set of exogeneous factors that drive natural selection, barley provides another fascinating, and economically important, example. The process of malting involves the sprouting of moist barley grains, driving the release of enzymes that break down starch into fermentable sugars. In the wild, various environmental cues can trigger germination to improve the odds of the emerging seedling encountering favourable weather conditions for subsequent growth 6 . In the malt house, by contrast, germination has to be fast and uniform in modern cultivars to satisfy the desired specifications of the industry. In addition to these examples, traits such as disease resistance, plant architecture and nutrient use have been a focus for plant breeders and studied intensively by barley geneticists 7 . Although barley genetic analysis flourished during a 'classical' period 8 in the first half of the 20th century, it started to lag behind small-genome models because of difficulties in adapting molecular biology techniques to a large genome rich in repeats 9 . However, interest in barley as a diploid model for temperate cereals has surged again as DNA sequencing became more powerful. High-quality sequences of several barley genomes have been recently assembled 10 . New sequencing technologies have shifted the focus of
sPlot – A new tool for global vegetation analyses
Aims :Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale.
The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.
Improving forest ecosystem functions by optimizing tree species spatial arrangement
Reforestation and afforestation programs are promoted as strategies to mitigate rising atmospheric CO2 concentrations and enhance ecosystem services. Planting diverse forests is supposed to foster such benefits, but optimal tree planting techniques, especially regarding species spatial arrangement, are underexplored. Here, using field measurements from the subtropical BEF-China experiment, we simulate tree growth, leaf litterfall, and decomposition, as a function of various spatial arrangements of tree species, from clusters of species to random distributions. Our simulations suggest that increasing tree species spatial heterogeneity in forests composed of eight tree species leads to higher biomass production, more evenly distributed litterfall, increased litter decomposition, and associated nitrogen and carbon cycling. These effects on forest nutrient dynamics are amplified with increasing species richness. Our data show that the spatial arrangement of tree species is a critical component determining biodiversity-ecosystem functioning relationships. Therefore, we suggest the explicit consideration of spatial arrangements when planting trees for reforestation and afforestation projects.
Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera
In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeepingindustry and the pollination services provided by managed and wild pollinators.
Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why
[b]1.[/b] Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates.[br/][br/][b]2.[/b] If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth–trait relationships may vary along environmental gradients.[br/][br/][b]3.[/b] We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base.[br/][br/][b]4.[/b] We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together.[br/][br/][b]5.[/b] Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR–trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales.[br/][br/][b]6.[/b] Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer.
The COVID-19 MS Coalition—accelerating diagnostics, prognostics, and treatment
The power of mass spectrometry to generate rapid, precise, and reproducible diagnostic information that complements genomic information and accelerates our understanding of the disease, is now becoming a reality.3,4 Mass spectrometry-based analysis can answer questions broadly falling into two categories. [...]data will facilitate public health efforts for population screening, defining high-risk patients, tracking disease progression, and identifying sources of vulnerability that will permit treatment stratification and minimise or prevent future coronavirus pandemics. The COVID-19 MS Coalition is a collective mass spectrometry effort that will provide molecular level information on SARS-CoV-2 in the human host and reveal pathophysiological and structural information to treat and minimise COVID-19 infection.
Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis
ABSTRACT A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD)-causing agents to spread in soil. ‘M26’ apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of operational taxonomic units affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility of the ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.