Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
102 result(s) for "Martinac, Boris"
Sort by:
Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension
Mechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer. To achieve this, we generate HEK293 cell membrane blebs largely free of cytoskeleton. Using the bacterial channel MscL, we calibrate the bilayer tension demonstrating that activation of MscL in blebs is identical to that in reconstituted bilayers. Utilizing a novel PIEZO1–GFP fusion, we then show PIEZO1 is activated by bilayer tension in bleb membranes, gating at lower pressures indicative of removal of the cortical cytoskeleton and the mechanoprotection it provides. Thus, PIEZO1 channels must sense force directly transmitted through the bilayer. PIEZO1 is a mechanosensitive ion channel, but the mechanism of force transduction is unknown. Here Cox and Bae et al. disrupt the cortical cytoskeleton in HEK293 cells to show that PIEZO1 is gated directly by membrane tension.
Visualization of the mechanosensitive ion channel MscS under membrane tension
Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes 1 – 3 . However, how exactly they sense mechanical force remains under investigation 4 . The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels 4 – 8 , but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states 9 – 11 . Here we used cryo-electron microscopy to determine the structure of MscS in different membrane environments, including one that mimics a membrane under tension. We present the structures of MscS in the subconducting and desensitized states, and demonstrate that the conformation of MscS in a lipid bilayer in the open state is dynamic. Several associated lipids have distinct roles in MscS mechanosensation. Pore lipids are necessary to prevent ion conduction in the closed state. Gatekeeper lipids stabilize the closed conformation and dissociate with membrane tension, allowing the channel to open. Pocket lipids in a solvent-exposed pocket between subunits are pulled out under sustained tension, allowing the channel to transition to the subconducting state and then to the desensitized state. Our results provide a mechanistic underpinning and expand on the ‘force-from-lipids’ model for MscS mechanosensation 4 , 11 . The authors report the structural characterization of the mechanically activated channel MscS in different membrane environments and show how the mechanosensation of MscS can be visualized.
Pulling MscL open via N-terminal and TM1 helices: A computational study towards engineering an MscL nanovalve
There are great opportunities in the manipulation of bacterial mechanosensitive (MS) ion channels for specific and targeted drug delivery purposes. Recent research has shown that these ion channels have the potential to be converted into nanovalves through clever use of magnetic nanoparticles and magnetic fields. Using a combination of molecular dynamics (MD) simulations and the finite element (FE) modelling, this study investigates the theoretical feasibility of opening the MscL channel (MS channel of large conductance of E. coli) by applying mechanical force directly to its N-terminus. This region has already been reported to function as a major mechanosensor in this channel. The stress-strain behaviour of each MscL helix was obtained using all atom MD simulations. Using the same method, we simulated two models, the wild-type (WT) MscL and the G22N mutant MscL, both embedded in a POPE lipid bilayer. In addition to indicating the main interacting residues at the hydrophobic pore, their pairwise interaction energies were monitored during the channel gating. We implemented these inputs into our FE model of MscL using curve-fitting codes and continuum mechanics equations. In the FE model, the channel could be fully opened via pulling directly on the N-terminus and bottom of TM1 by mutating dominant van der Waals interactions in the channel pore; otherwise the stress generated on the channel protein can irreversibly unravel the N-secondary structure. This is a significant finding suggesting that applying force in this manner is sufficient to open an MscL nanovalve delivering various drugs used, for example, in cancer chemotherapy. More importantly, the FE model indicates that to fully operate an MscL nanovalve by pulling directly on the N-terminus and bottom of TM1, gain-of-function (GOF) mutants (e.g., G22N MscL) would have to be employed rather than the WT MscL channel.
Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation
Intracellular compartments are functional units that support the metabolism within living cells, through spatiotemporal regulation of chemical reactions and biological processes. Consequently, as a step forward in the bottom-up creation of artificial cells, building analogous intracellular architectures is essential for the expansion of cell-mimicking functionality. Herein, we report the development of a droplet laboratory platform to engineer complex emulsion-based, multicompartment artificial cells, using microfluidics and acoustic levitation. Such levitated models provide free-standing, dynamic, definable droplet networks for the compartmentalisation of chemical species. Equally, they can be remotely operated with pneumatic, heating, and magnetic elements for post-processing, including the incorporation of membrane proteins; alpha-hemolysin; and mechanosensitive channel of large-conductance. The assembly of droplet networks is three-dimensionally patterned with fluidic input configurations determining droplet contents and connectivity, whilst acoustic manipulation can be harnessed to reconfigure the droplet network in situ. The mechanosensitive channel can be repeatedly activated and deactivated in the levitated artificial cell by the application of acoustic and magnetic fields to modulate membrane tension on demand. This offers possibilities beyond one-time chemically mediated activation to provide repeated, non-contact, control of membrane protein function. Collectively, this expands our growing capability to program and operate increasingly sophisticated artificial cells as life-like materials. Engineering micro-emulsion plays a key role in the creation of bottom-up synthetic cells. Here, authors demonstrate a droplet laboratory platform to control membrane protein gating in functional artificial cell using microfluidics and acoustic levitation.
Novel Drug Targets in Diastolic Heart Disease
Diastolic heart failure, also referred to as heart failure with preserved ejection fraction (HFpEF), is a complex cardiovascular clinical syndrome that is a growing health burden worldwide. Patients present with high abnormal left ventricular filling pressures but normal ejection fraction that can progress to diastolic heart failure and death. The causes of diastolic dysfunction are varied, and pharmacotherapies are limited to managing the symptoms of the disease. At the level of the myocyte, cytoskeletal disarray and mitochondrial dysfunction are common features associated with diastolic disease. Understanding the mechanisms of abnormal diastolic filling pressures is necessary to identify novel treatments, which remains an area of significant unmet need. In this article, we discuss the mechanisms of maladaptive feedback contributing to increased extracellular stiffness, cytoskeletal disarray, and mitochondrial dysfunction in diastolic heart failure. Since the mechanisms are complex, understanding the contributing factors provides opportunities for the development of novel drug targets. These will be discussed and examined in the context of current therapy.
Lipid interactions and gating hysteresis suggest a physiological role for mechanosensitive channel YnaI
YnaI is a member of the family of bacterial MscS (mechanosensitive channel of small conductance)-like channels. Channel gating upon hypoosmotic stress and the role of lipids in this process have been extensively studied for MscS, but are less well understood for YnaI, which features two additional transmembrane helices. Here, we combined cryogenic electron microscopy, molecular dynamics simulations and patch-clamp electrophysiology to advance our understanding of YnaI. The two additional helices move the lipid-filled hydrophobic pockets in YnaI further away from the lipid bilayer and change the function of the pocket lipids from being a critical gating element in MscS to being more of a structural element in YnaI. Unlike MscS, YnaI shows pronounced gating hysteresis and remains open to a substantially lower membrane tension than is needed to initially open the channel. Thus, at near-lytic membrane tension, both MscL and YnaI will open, but while MscL has a large pore and must close quickly to minimize loss of essential metabolites, YnaI only conducts ions and can thus remain open for longer to continue to facilitate pressure equilibration across the membrane. Bacterial mechanosensitive channel YnaI opens at near-lytic membrane tension. Here, authors show that YnaI remains open to a much lower membrane tension than required for its activation and evolved to respond to slow changes in membrane tension.
TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration
Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions. When cells receive signals about their surrounding environment, this initiates a chain of signals which generate a response. Some of these signalling pathways allow cells to sense physical and mechanical forces via a process called mechanotransduction. There are different types of mechanotransduction. In one pathway, mechanical forces open up specialized channels on the cell surface which allow charged particles to move across the membrane and create an electrical current. Mechanoelectrical transduction plays an important role in the spread of cancer: as cancer cells move away from a tumour they use these signalling pathways to find their way between cells and move into other parts of the body. Understanding these pathways could reveal ways to stop cancer from spreading, making it easier to treat. However, it remains unclear which molecules regulate mechanoelectrical transduction in cancer cells. Now, Patkunarajah, Stear et al. have studied whether mechanoelectrical transduction is involved in the migration of skin cancer cells. To study mechanoelectrical transduction, a fine mechanical input was applied to the skin cancer cells whilst measuring the flow of charged molecules moving across the membrane. This experiment revealed that a previously unknown protein named Elkin1 is required to convert mechanical forces into electrical currents. Deleting this newly found protein caused skin cancer cells to move more slowly and dissociate more easily from tumour-like clusters of cells. These findings suggest that Elkin1 is part of a newly identified mechanotransduction pathway that allows cells to sense mechanical forces from their surrounding environment. More work is needed to determine what role Elkin1 plays in mechanoelectrical transduction and whether other proteins are also involved. This could lead to new approaches that prevent cancer cells from dissociating from tumours and spreading to other body parts.
The Ca2+-activated cation channel TRPM4 is a positive regulator of pressure overload-induced cardiac hypertrophy
Pathological left ventricular hypertrophy (LVH) occurs in response to pressure overload and remains the single most important clinical predictor of cardiac mortality. The molecular pathways in the induction of pressure overload LVH are potential targets for therapeutic intervention. Current treatments aim to remove the pressure overload stimulus for LVH, but do not completely reverse adverse cardiac remodelling. Although numerous molecular signalling steps in the induction of LVH have been identified, the initial step by which mechanical stretch associated with cardiac pressure overload is converted into a chemical signal that initiates hypertrophic signalling remains unresolved. In this study, we show that selective deletion of transient receptor potential melastatin 4 (TRPM4) channels in mouse cardiomyocytes results in an approximately 50% reduction in the LVH induced by transverse aortic constriction. Our results suggest that TRPM4 channel is an important component of the mechanosensory signalling pathway that induces LVH in response to pressure overload and represents a potential novel therapeutic target for the prevention of pathological LVH.
Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel
The mechanosensitive channel of large conductance, which serves as a model system for mechanosensitive channels, has previously been crystallized in the closed form, but not in the open form. Ensemble measurements and electrophysiological sieving experiments show that the open-diameter of the channel pore is >25 Å, but the exact size and whether the conformational change follows a helix-tilt or barrel-stave model are unclear. Here we report measurements of the distance changes on liposome-reconstituted MscL transmembrane α-helices, using a ‘virtual sorting’ single-molecule fluorescence energy transfer. We observed directly that the channel opens via the helix-tilt model and the open pore reaches 2.8 nm in diameter. In addition, based on the measurements, we developed a molecular dynamics model of the channel structure in the open state which confirms our direct observations. Bacterial cells are full of fluid, and they will burst if they are not able to respond to a build up of pressure. Fortunately, the membrane of a bacterial cell contains channels that can detect the increased mechanical stress on the cell membrane and then open to relieve the pressure. In many bacterial cells, the last defence against the cell exploding is called the mechanosensitive channel of large conductance (MscL). This is made of five proteins, each of which consists of TM1 and TM2 helixes, which are responsible for opening and closing the channel. Two models have been proposed to explain how the channels are opened. In the barrel-stave model, the TM1 helix moves, while the TM2 helix remains stationary. This results in an open pore that is lined with TM1 and TM2 helixes in the same way that wooden staves line a barrel. In the helix-tilt model, both helixes tilt towards the membrane to open the channel. Wang et al. have now used a technique called single-molecule fluorescence resonance energy transfer (FRET) to explore the structure of the open channel in E. coli in order to determine which model is correct. In this technique an individual channel is labeled with two different fluorescent molecules. By illuminating the channel with light of a wavelength that excites the first fluorescent molecule, and measuring the strength of the fluorescence from the second molecule, it is possible to work out the distance between the two molecules. From this, the structure of the channel and how it opens and closes can be explored. Previous attempts to measure the diameters of open channels using fluorescence techniques have suffered from issues caused by the use of large numbers of fluorescent molecules. This has made it necessary to use computational modeling to extract the required data. By looking at a series of individual proteins, Wang et al. overcame these problems and found that the diameter of the fully open pore is 2.8 nm. The result provides strong support for the helix-tilt model.
Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS
Mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance are the major players in the protection of bacterial cells against hypoosmotic shock. Although a great deal is known about structure and function of these channels, much less is known about how membrane lipids may influence their mechanosensitivity and function. In this study, we use liposome coreconstitution to examine the effects of different types of lipids on MscS and MscL mechanosensitivity simultaneously using the patch-clamp technique and confocal microscopy. Fluorescence lifetime imaging (FLIM)-FRET microscopy demonstrated that coreconstitution of MscS and MscL led to clustering of these channels causing a significant increase in the MscS activation threshold. Furthermore, the MscL/MscS threshold ratio dramatically decreased in thinner compared with thicker bilayers and upon addition of cholesterol, known to affect the bilayer thickness, stiffness and pressure profile. In contrast, application of micromolar concentrations of lysophosphatidylcholine (LPC) led to an increase of the MscL/MscS threshold ratio. These data suggest that differences in hydrophobic mismatch and bilayer stiffness, change in transbilayer pressure profile, and close proximity of MscL and MscS affect the structural dynamics of both channels to a different extent. Our findings may have far-reaching implications for other types of ion channels and membrane proteins that, like MscL and MscS, may coexist in multiple molecular complexes and, consequently, have their activation characteristics significantly affected by changes in the lipid environment and their proximity to each other.