Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
135
result(s) for
"Martinache, Frantz"
Sort by:
The Asymmetric Pupil Fourier Wavefront Sensor
ABSTRACT This article introduces a novel wavefront sensing approach that relies on the Fourier analysis of a single conventional direct image. In the high Strehl ratio regime, the relation between the phase measured in the Fourier plane and the wavefront errors in the pupil can be linearized, as was shown in a previous work that introduced the notion of generalized closure-phase, or kernel-phase. The technique, to be usable as presented requires two conditions to be met: (1) the wavefront errors must be kept small (of the order of one radian or less), and (2) the pupil must include some asymmetry, which can be introduced with a mask, for the problem to become solvable. Simulations show that this asymmetric pupil Fourier wavefront sensing or APF-WFS technique can improve the Strehl ratio from 50% to over 90% in just a few iterations, with excellent photon noise sensitivity properties, suggesting that on-sky close loop APF-WFS is possible with an extreme adaptive optics system.
Journal Article
The MKID Exoplanet Camera for Subaru SCExAO
by
Steiger, Sarah
,
Fruitwala, Neelay
,
Bockstiegel, Clint
in
Astronomical detectors
,
Astronomical instrumentation
,
Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization
2020
We present the MKID Exoplanet Camera (MEC), a z through J band (800-1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of 10−7 at 2 λ/D. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans.
Journal Article
The Near Infrared Imager and Slitless Spectrograph for JWST. V. Kernel Phase Imaging and Data Analysis
by
Vandal, Thomas
,
Mérand, Antoine
,
Gallenne, Alexandre
in
Astronomy data reduction
,
Circumstellar dust
,
Data analysis
2023
Kernel phase imaging (KPI) enables the direct detection of substellar companions and circumstellar dust close to and below the classical (Rayleigh) diffraction limit. The high-Strehl full pupil images provided by the James Webb Space Telescope (JWST) are ideal for application of the KPI technique. We present a kernel phase analysis of JWST NIRISS full pupil images taken during the instrument commissioning and compare the performance to closely related NIRISS aperture masking interferometry (AMI) observations. For this purpose, we develop and make publicly available the custom Kpi3Pipeline data reduction pipeline enabling the extraction of kernel phase observables from JWST images. The extracted observables are saved into a new and versatile kernel phase FITS file data exchange format. Furthermore, we present our new and publicly available fouriever toolkit which can be used to search for companions and derive detection limits from KPI, AMI, and long-baseline interferometry observations while accounting for correlated uncertainties in the model fitting process. Among the four KPI targets that were observed during NIRISS instrument commissioning, we discover a low-contrast (∼1:5) close-in (∼1 λ / D ) companion candidate around CPD-66 562 and a new high-contrast (∼1:170) detection separated by ∼1.5 λ / D from 2MASS J062802.01-663738.0. The 5 σ companion detection limits around the other two targets reach ∼6.5 mag at ∼200 mas and ∼7 mag at ∼400 mas. Comparing these limits to those obtained from the NIRISS AMI commissioning observations, we find that KPI and AMI perform similar in the same amount of observing time. Due to its 5.6 times higher throughput if compared to AMI, KPI is beneficial for observing faint targets and superior to AMI at separations ≳325 mas. At very small separations (≲100 mas) and between ∼250 and 325 mas, AMI slightly outperforms KPI which suffers from increased photon noise from the core and the first Airy ring of the point-spread function.
Journal Article
A Demonstration of a Versatile Low-order Wavefront Sensor Tested on Multiple Coronographs
by
Martinache, Frantz
,
Baudoz, Pierre
,
Kudo, Tomoyuki
in
Astrophysics
,
Coronographs
,
instrumentation: adaptive optics
2017
Detecting faint companions in close proximity to stars is one of the major goals of current/planned ground- and space-based high-contrast imaging instruments. High-performance coronagraphs can suppress the diffraction features and gain access to companions at small angular separation. However, the uncontrolled pointing errors degrade the coronagraphic performance by leaking starlight around the coronagraphic focal-plane mask, preventing the detection of companions at small separations. A Lyot-stop low-order wavefront sensor (LLOWFS) was therefore introduced to calibrate and measure these aberrations for focal-plane phase mask coronagraphs. This sensor quantifies the variations in wavefront error decomposed into a few Zernike modes by reimaging the diffracted starlight rejected by a reflective Lyot stop. The technique was tested with several coronagraphs on the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system at the Subaru Telescope. The wavefront was decomposed into 15 and 35 Zernike modes with an occulting and focal-plane phase mask coronagraph, respectively, which were used to drive a closed-loop correction in the laboratory. Using a 2000-actuator deformable mirror, a closed-loop pointing stability between 10−3-10−4 λ/D was achieved in the laboratory in H-band, with sub nanometer residuals for the other Zernike modes (Noll index > 4 ). On-sky, the low-order control of 10+ Zernike modes for the phase-induced amplitude apodization and the vector vortex coronagraphs was demonstrated, with a closed-loop pointing stability of 10 − 4 λ D under good seeing and 10 − 3 λ D under moderate seeing conditions readily achievable.
Journal Article
Measurements of Speckle Lifetimes in Near-infrared Extreme Adaptive Optics Images for Optimizing Focal Plane Wavefront Control
by
Hall, Donald N. B.
,
Martinache, Frantz
,
Lozi, Julien
in
Astronomical Software, Data Analysis, and Techniques
,
Astrophysics
,
Atmospheric effects
2018
Although extreme adaptive optics (ExAO) systems can greatly reduce the effects of atmospheric turbulence and deliver diffraction-limited images, our ability to observe faint objects such as extrasolar planets or debris disks at small angular separations is greatly limited by the presence of a speckle halo caused by imperfect wavefront corrections. These speckles change with a variety of timescales, from milliseconds to many hours, and various techniques have been developed to mitigate them during observations and during data reduction. Detection limits improve with increased speckle reduction, so an understanding of how speckles evolve (particularly at near-infrared wavelengths, which is where most adaptive optics science instruments operate) is of distinct interest. We used a SAPHIRA detector behind Subaru Telescope's SCExAO instrument to collect H-band images of the ExAO-corrected point-spread function (PSF) at a frame rate of 1.68 kHz. We analyzed these images using two techniques to measure the timescales over which the speckles evolved. In the first technique, we analyzed the images in a manner applicable to predicting performance of real-time speckle-nulling loops. We repeated this analysis using data from several nights to account for varying weather and AO conditions. In our second analysis, which follows the techniques employed by Milli et al. (2016) but using data with three orders of magnitude better temporal resolution, we identified a new regime of speckle behavior that occurs at timescales of milliseconds. It is not purely an instrument effect and likely is an atmospheric timescale filtered by the ExAO response. We also observed an exponential decay in the Pearson's correlation coefficients (which we employed to quantify the change in speckles) on timescales of seconds and a linear decay on timescales of minutes, which is in agreement with the behavior observed by Milli et al. For both of our analyses, we also collected similar data sets using SCExAO's internal light source to separate atmospheric effects from instrumental effects.
Journal Article
Coronagraphic Low-Order Wavefront Sensor: Postprocessing Sensitivity Enhancer for High-Performance Coronagraphs
by
Martinache, Frantz
,
Matsuo, Taro
,
Garrel, Vincent
in
Astronomy
,
Earth, ocean, space
,
Exact sciences and technology
2011
Detection and characterization of exoplanets by direct imaging requires a coronagraph designed to deliver high-contrast at small angular separation. To achieve this, an accurate control of low-order aberrations, such as pointing and focus errors, is essential to optimize coronagraphic rejection and avoid the possible confusion between exoplanet light and coronagraphic leaks in the science image. Simulations and laboratory prototyping have shown that a coronagraphic low-order wavefront sensor (CLOWFS), using a single defocused image of a reflective focal-plane ring, can be used to control tip-tilt to an accuracy of10-3 λ/D
10
-
3
λ
/
D
. This article demonstrates that the data acquired by CLOWFS can also be used in postprocessing to calibrate residual coronagraphic leaks from the science image. Using both the CLOWFS camera and the science camera in the system, we quantify the accuracy of the method and its ability to successfully remove light due to low-order errors from the science image. We also report the implementation and performance of the CLOWFS on the Subaru Coronagraphic Extreme-AO (SCExAO) system and its expected on-sky performance. In the laboratory, with a level of disturbance similar to that encountered in a post-AO beam, CLOWFS postprocessing has achieved speckle calibration to1/300
1
/
300
of the raw speckle level. This is about 40 times better than could be done with an idealized PSF subtraction that does not rely on CLOWFS.
Journal Article
Enhancing Stellar Spectroscopy with Extreme Adaptive Optics and Photonics
by
Jovanovic, N.
,
Schwab, C.
,
Martinache, F.
in
Astrophysics
,
Instrumentation and Methods for Astrophysic
,
instrumentation: adaptive optics
2016
Extreme adaptive optics (AO) systems are now in operation across the globe. These systems, capable of high order wavefront correction, deliver Strehl ratios of ∼ 90 % in the near-infrared. Originally intended for the direct imaging of exoplanets, these systems are often equipped with advanced coronagraphs that suppress the on-axis-star, interferometers to calibrate wavefront errors, and low order wavefront sensors to stabilize any tip/tilt residuals to a degree never seen before. Such systems are well positioned to facilitate the detailed spectroscopic characterization of faint substellar companions at small angular separations from the host star. Additionally, the increased light concentration of the point-spread function and the unprecedented stability create opportunities in other fields of astronomy as well, including spectroscopy. With such Strehl ratios, efficient injection into single-mode fibers (SMFs) or photonic lanterns becomes possible. With diffraction-limited components feeding the instrument, calibrating a spectrograph's line profile becomes considerably easier, as modal noise or imperfect scrambling of the fiber output are no longer an issue. It also opens up the possibility of exploiting photonic technologies for their advanced functionalities, inherent replicability, and small, lightweight footprint to design and build future instrumentation. In this work, we outline how extreme AO systems will enable advanced photonic and diffraction-limited technologies to be exploited in spectrograph design and the impact it will have on spectroscopy. We illustrate that the precision of an instrument based on these technologies, with light injected from an efficient SMF feed would be entirely limited by the spectral content and stellar noise alone on cool stars and would be capable of achieving a radial velocity precision of several m/s; the level required for detecting an exo-Earth in the habitable zone of a nearby M-dwarf.
Journal Article
Visible and Near-infrared Laboratory Demonstration of a Simplified Pyramid Wavefront Sensor
by
Martinache, Frantz
,
Jacobson, Shane
,
Chun, Mark
in
Adaptive Optics
,
Astronomical Instrumentation
,
Astrophysics
2019
Wavefront sensing and control are important for enabling one of the key advantages of using large apertures, namely higher angular resolution. Pyramid wavefront sensors are becoming commonplace in new instrument designs owing to their superior sensitivity. However, one remaining roadblock to their widespread use is the fabrication of the pyramidal optic. This complex optic is challenging to fabricate due to the pyramid tip, where four planes need to intersect at a single point. Thus far, only a handful of these have been produced due to the low yields and long lead times. To address this, we present an alternative implementation of the pyramid wavefront sensor which relies instead on two roof prisms. Such prisms are easy and inexpensive to source. We demonstrate the successful operation of the roof prism pyramid wavefront sensor on an 8 m class telescope, at visible and near-infrared wavelengths, for the first time using a SAPHIRA HgCdTe detector without modulation for a laboratory demonstration, and elucidate how this sensor can be used more widely on wavefront control test benches and instruments.
Journal Article
On-Sky Speckle Nulling Demonstration at Small Angular Separation with SCExAO
by
Martinache, Frantz
,
Kudo, Tomoyuki
,
McElwain, Michael
in
Angular separation
,
Astrophysics
,
Calibration
2014
This paper presents the first on-sky demonstration of speckle nulling, which was achieved at the Subaru Telescope in the context of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) Project. Despite the absence of a high-order high-bandwidth closed-loop AO system, observations conducted with SCExAO show that even in poor-to-moderate observing conditions, speckle nulling can be used to suppress static and slow speckles even in the presence of a brighter dynamic speckle halo, suggesting that more advanced high-contrast imaging algorithms developed in the laboratory can be applied to ground-based systems.
Journal Article
Lyot-based Low Order Wavefront Sensor for Phase-mask Coronagraphs: Principle, Simulations and Laboratory Experiments
2014
High performance coronagraphic imaging of faint structures around bright stars at small angular separations requires fine control of tip, tilt, and other low order aberrations. When such errors occur upstream of a coronagraph they result in starlight leakage, which reduces the dynamic range of the instrument. This issue has been previously addressed for occulting coronagraphs by sensing the starlight before or at the coronagraphic focal plane. One such solution, the coronagraphic low order wave-front sensor (CLOWFS), uses a partially reflective focal plane mask to measure pointing errors for Lyot-type coronagraphs. To deal with pointing errors in low inner working angle phase mask coronagraphs which do not have a reflective focal plane mask, we have adapted the CLOWFS technique. This new concept relies on starlight diffracted by the focal plane phase mask being reflected by the Lyot stop towards a sensor which reliably measures low order aberrations such as tip and tilt. This reflective Lyot-based wavefront sensor is a linear reconstructor which provides high sensitivity tip-tilt error measurements with phase mask coronagraphs. Simulations show that the measurement accuracy of pointing errors with realistic post adaptive optics residuals are ≈10-2λ/D per mode at λ = 1.6 μm for a four quadrant phase mask. In addition, we demonstrate the open loop measurement pointing accuracy of 10-2λ/D at 638 nm for a four quadrant phase mask in the laboratory.
Journal Article