Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
196
result(s) for
"Martino, Carlos"
Sort by:
Optimization of parameters in coherent spin dynamics of radical pairs in quantum biology
2023
Identification of the external electromagnetic fields and internal hyperfine parameters which optimize the quantum singlet-triplet yield of simplified radical pairs modeled by Schrödinger system with spin Hamiltonians given by the sum of Zeeman interaction and hyperfine coupling interaction terms are analyzed. A method that combines sensitivity analysis with Tikhonov regularization is implemented. Numerical results demonstrate that the quantum singlet-triplet yield of the radical pair system can be significantly reduced if optimization is pursued simultaneously for both external magnetic fields and internal hyperfine parameters. The results may contribute towards understanding the structure-function relationship of a putative magnetoreceptor to manipulate and enhance quantum coherences at room temperature and leveraging biofidelic function to inspire novel quantum devices.
Journal Article
Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species
2018
Exposure to man-made electromagnetic fields (EMFs), which increasingly pollute our environment, have consequences for human health about which there is continuing ignorance and debate. Whereas there is considerable ongoing concern about their harmful effects, magnetic fields are at the same time being applied as therapeutic tools in regenerative medicine, oncology, orthopedics, and neurology. This paradox cannot be resolved until the cellular mechanisms underlying such effects are identified. Here, we show by biochemical and imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS), a potentially toxic metabolite with multiple roles in stress response and cellular ageing. Following exposure to PEMF, cell growth is slowed, and ROS-responsive genes are induced. These effects require the presence of cryptochrome, a putative magnetosensor that synthesizes ROS. We conclude that modulation of intracellular ROS via cryptochromes represents a general response to weak EMFs, which can account for either therapeutic or pathological effects depending on exposure. Clinically, our findings provide a rationale to optimize low field magnetic stimulation for novel therapeutic applications while warning against the possibility of harmful synergistic effects with environmental agents that further increase intracellular ROS.
Journal Article
Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark
by
Martino, Carlos F.
,
Ahmad, Margaret
,
Link, Justin
in
Agriculture
,
Arabidopsis
,
Arabidopsis - growth & development
2019
Cryptochromes are highly conserved blue-light-absorbing flavoproteins which have been linked to the perception of electromagnetic stimuli in numerous organisms. These include sensing the direction of the earth’s magnetic field in migratory birds and the intensity of magnetic fields in insects and plants. When exposed to light, cryptochromes undergo flavin reduction/reoxidation redox cycles leading to biological activation which generate radical pairs thought to be the basis for magnetic sensitivity. However, the nature of the magnetically sensitive radical pairs and the steps at which they act during the cryptochrome redox cycle are currently a matter of debate. Here, we investigate the response of Arabidopsis cryptochrome-1 in vivo to a static magnetic field of 500 µT (10 × earth’s field) using both plant growth and light-dependent phosphorylation as an assay. Cryptochrome responses to light were enhanced by the magnetic field, as indicated by increased inhibition of hypocotyl elongation and increased cryptochrome phosphorylation. However, when light and dark intervals were given intermittently, a plant response to the magnetic field was observed even when the magnetic field was given exclusively during the dark intervals between light exposures. This indicates that the magnetically sensitive reaction step in the cryptochrome photocycle must occur during flavin reoxidation, and likely involves the formation of reactive oxygen species.
Journal Article
Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields
by
Singel, David J.
,
Martino, Carlos F.
,
Usselman, Robert J.
in
Animals
,
Antioxidants
,
Biochemistry
2014
The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2•-) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2•- and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2•- and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2•- spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2•- and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth.
Journal Article
Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome
2017
Cryptochromes are evolutionarily conserved blue light receptors with many roles throughout plant growth and development. They undergo conformational changes in response to light enabling interaction with multiple downstream signaling partners. Recently, it has been shown that cryptochromes also synthesize reactive oxygen species (ROS) in response to light, suggesting the possibility of an alternate signaling mechanism. Here we show by fluorescence imaging and microscopy that H
2
0
2
and ROS accumulate in the plant nucleus after cryptochrome activation. They induce ROS-regulated transcripts including for genes implicated in pathogen defense, biotic and abiotic stress. Mutant cryptochrome alleles that are non-functional in photomorphogenesis retain the capacity to induce ROS-responsive phenotypes. We conclude that nuclear biosynthesis of ROS by cryptochromes represents a new signaling paradigm that complements currently known mechanisms. This may lead to novel applications using blue light induced oxidative bursts to prime crop plants against the deleterious effects of environmental stresses and toxins.
Journal Article
Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle
2017
Cryptochromes are evolutionarily conserved blue-light absorbing flavoproteins which participate in many important cellular processes including in entrainment of the circadian clock in plants, Drosophila and humans. Drosophila melanogaster cryptochrome (DmCry) absorbs light through a flavin (FAD) cofactor that undergoes photoreduction to the anionic radical (FAD•-) redox state both in vitro and in vivo. However, recent efforts to link this photoconversion to the initiation of a biological response have remained controversial. Here, we show by kinetic modeling of the DmCry photocycle that the fluence dependence, quantum yield, and half-life of flavin redox state interconversion are consistent with the anionic radical (FAD•-) as the signaling state in vivo. We show by fluorescence detection techniques that illumination of purified DmCry results in enzymatic conversion of molecular oxygen (O2) to reactive oxygen species (ROS). We extend these observations in living cells to demonstrate transient formation of superoxide (O2•-), and accumulation of hydrogen peroxide (H2O2) in the nucleus of insect cell cultures upon DmCry illumination. These results define the kinetic parameters of the Drosophila cryptochrome photocycle and support light-driven electron transfer to the flavin in DmCry signaling. They furthermore raise the intriguing possibility that light-dependent formation of ROS as a byproduct of the cryptochrome photocycle may contribute to its signaling role.
Journal Article
The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
by
Ritz, Thorsten
,
Singel, David J.
,
Martino, Carlos F.
in
631/57/1464
,
639/766/747
,
Bioenergetics
2016
Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O
2
) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O
2
•−
) and hydrogen peroxide (H
2
O
2
) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.
Journal Article
Modulation of Hydrogen Peroxide Production in Cellular Systems by Low Level Magnetic Fields
2011
Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, suggesting that ROS might be involved in the development of these cells. However, recent studies suggest that inducing an excess of ROS in cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumors frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially modulate the development of these cells by controlling their ROS production. Low levels of ROS are also important for the development and survival of normal cells. In this manuscript, we present data on the influence of the suppression of the Earth's magnetic field (low level magnetic fields or LLF) which magnitudes range from 0.2 µT to 2 µT on the modulation of hydrogen peroxide (H(2)O(2)) in human fibrosarcoma cancer cell line HT1080, pancreatic AsPC-1 cancer cell line, and bovine pulmonary artery endothelial cells (PAEC) exposed to geomagnetic field (control; 45 µT-60 µT). Reduction of the Earth's magnetic field suppressed H(2)O(2) production in cancer cells and PAEC. The addition of catalase and superoxide dismutase (SOD) mimetic MnTBAP inhibited the magnetic field effect. Modulating ROS production by magnetic fields may open new venues of biomedical research and therapeutic strategies.
Journal Article
Arabidopsis cryptochrome is responsive to Radiofrequency (RF) electromagnetic fields
2020
How living systems respond to weak electromagnetic fields represents one of the major unsolved challenges in sensory biology. Recent evidence has implicated cryptochrome, an evolutionarily conserved flavoprotein receptor, in magnetic field responses of organisms ranging from plants to migratory birds. However, whether cryptochromes fulfill the criteria to function as biological magnetosensors remains to be established. Currently, theoretical predictions on the underlying mechanism of chemical magnetoreception have been supported by experimental observations that exposure to radiofrequency (RF) in the MHz range disrupt bird orientation and mammalian cellular respiration. Here we show that, in keeping with certain quantum physical hypotheses, a weak 7 MHz radiofrequency magnetic field significantly reduces the biological responsivity to blue light of the cryptochrome receptor cry1 in
Arabidopsis
seedlings. Using an
in vivo
phosphorylation assay that specifically detects activated cryptochrome, we demonstrate that RF exposure reduces conformational changes associated with biological activity. RF exposure furthermore alters cryptochrome-dependent plant growth responses and gene expression to a degree consistent with theoretical predictions. To our knowledge this represents the first demonstration of a biological receptor responding to RF exposure, providing important new implications for magnetosensing as well as possible future applications in biotechnology and medicine.
Journal Article
Blue‐light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism
by
Martino, Carlos
,
Ahmad, Margaret
,
Consentino, Laurent
in
Apoptosis
,
Arabidopsis
,
Arabidopsis - drug effects
2015
Cryptochromes are widespread blue‐light absorbing flavoproteins with important signaling roles. In plants they mediate de‐etiolation, developmental and stress responses resulting from interaction with downstream signaling partners such as transcription factors and components of the proteasome. Recently, it has been shown that Arabidopsis cry1 activation by blue light also results in direct enzymatic conversion of molecular oxygen (O₂) to reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in vitro. Here we explored whether direct enzymatic synthesis of ROS by Arabidopsis cry1 can play a physiological role in vivo. ROS formation resulting from cry1 expression was measured by fluorescence assay in insect cell cultures and in Arabidopsis protoplasts from cryptochrome mutant seedlings. Cell death was determined by colorimetric assay. We found that ROS formation results from cry1 activation and induces cell death in insect cell cultures. In plant protoplasts, cryptochrome activation results in rapid increase in ROS formation and cell death. We conclude that ROS formation by cryptochromes may indeed be of physiological relevance and could represent a novel paradigm for cryptochrome signaling.
Journal Article