Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
37
result(s) for
"Martone, Michele"
Sort by:
Editorial for the Special Issue “SAR for Forest Mapping II”
2023
As vital natural resources, forests are of extreme importance for all living beings on our planet [...]
Journal Article
Deep Learning for Mapping Tropical Forests with TanDEM-X Bistatic InSAR Data
2022
The TanDEM-X synthetic aperture radar (SAR) system allows for the recording of bistatic interferometric SAR (InSAR) acquisitions, which provide additional information to the common amplitude images acquired by monostatic SAR systems. More concretely, the volume decorrelation factor, which can be derived from the bistatic interferometric coherence, is a reliable indicator of the presence of vegetation and it was used as main input feature for the generation of the global TanDEM-X forest/non-forest map, by means of a clustering algorithm. In this work, we investigate the capabilities of deep Convolutional Neural Networks (CNNs) for mapping tropical forests at large-scale using TanDEM-X InSAR data. For this purpose, we rely on a U-Net architecture, which takes as input a set of feature maps selected on the basis of previous preparatory works. Moreover, we design an ad hoc training strategy, aimed at developing a robust model for global mapping purposes, which has to properly manage the large variety of different acquisition geometries characterizing the TanDEM-X global data set. In addition to detecting forest/non-forest areas, the CNN has also been trained to detect water surfaces, which are typically characterized by low values of coherence. By applying the proposed method on single TanDEM-X images, we achieved a significant performance improvement with respect to the baseline clustering approach, with an average F-score increase of 0.13. We then applied such a model for mapping the entire Amazon rainforest, as well as the other tropical forests in Central Africa and South-East Asia, in order to test its robustness and generalization capabilities, and we observed that forests are typically well detected as contour closed regions and that water classification is reliable, too. Finally, the generated maps show a great potential for mapping temporal changes occurring over forested areas and can be used for generating large-scale maps of deforestation.
Journal Article
The Global Water Body Layer from TanDEM-X Interferometric SAR Data
by
González, Carolina
,
Valdo, Paolo
,
Bueso-Bello, Jose-Luis
in
Algorithms
,
bistatic SAR
,
byproducts
2021
The interferometric synthetic aperture radar (InSAR) data set, acquired by the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission (TDM), represents a unique data source to derive geo-information products at a global scale. The complete Earth’s landmasses have been surveyed at least twice during the mission bistatic operation, which started at the end of 2010. Examples of the delivered global products are the TanDEM-X digital elevation model (DEM) (at a final independent posting of 12 m × 12 m) or the TanDEM-X global Forest/Non-Forest (FNF) map. The need for a reliable water product from TanDEM-X data was dictated by the limited accuracy and difficulty of use of the TDX Water Indication Mask (WAM), delivered as by-product of the global DEM, which jeopardizes its use for scientific applications, as well. Similarly as it has been done for the generation of the FNF map; in this work, we utilize the global data set of TanDEM-X quicklook images at 50 m × 50 m resolution, acquired between 2011 and 2016, to derive a new global water body layer (WBL), covering a range from −60∘ to +90∘ latitudes. The bistatic interferometric coherence is used as the primary input feature for performing water detection. We classify water surfaces in single TanDEM-X images, by considering the system’s geometric configuration and exploiting a watershed-based segmentation algorithm. Subsequently, single overlapping acquisitions are mosaicked together in a two-step logically weighting process to derive the global TDM WBL product, which comprises a binary averaged water/non-water layer as well as a permanent/temporary water indication layer. The accuracy of the new TDM WBL has been assessed over Europe, through a comparison with the Copernicus water and wetness layer, provided by the European Space Agency (ESA), at a 20 m × 20 m resolution. The F-score ranges from 83%, when considering all geocells (of 1∘ latitudes × 1∘ longitudes) over Europe, up to 93%, when considering only the geocells with a water content higher than 1%. At global scale, the quality of the product has been evaluated, by intercomparison, with other existing global water maps, resulting in an overall agreement that often exceeds 85% (F-score) when the content in the geocell is higher than 1%. The global TDM WBL presented in this study will be made available to the scientific community for free download and usage.
Journal Article
High-Resolution Forest Mapping from TanDEM-X Interferometric Data Exploiting Nonlocal Filtering
2018
In this paper, we discuss the potential and limitations of high-resolution single-pass interferometric synthetic aperture radar (InSAR) data for forest mapping. In particular, we present forest/non-forest classification mosaics of the State of Pennsylvania, USA, generated using TanDEM-X data at ground resolutions down to 6 m. The investigated data set was acquired between 2011 in bistatic stripmap single polarization (HH) mode. Among the different factors affecting the quality of InSAR data, the so-called volume correlation factor quantifies the coherence loss due to volume scattering, which typically occurs in the presence of vegetation, and is a very sensitive indicator for the discrimination of forested from non-forested areas. For this reason, it has been chosen as input observable for performing the classification. In this framework, both standard boxcar and nonlocal filtering methods have been considered for the estimation of the volume correlation factor. The resulting forest/non-forest mosaics have been validated using an accurate vegetation map of the region derived from Lidar-Optic data as external independent reference. Thanks to their outstanding performance in terms of noise reduction, together with spatial features preservation, nonlocal filters show a level of agreement of about 80.5% and we observed a systematic improvement in terms of accuracy with respect to the boxcar filtering at the same resolution of about 4.5 percent points. This approach is therefore of primary importance to achieve a reliable classification at such fine resolution. Finally, the high-resolution forest/non-forest classification product of the State of Pennsylvania presented in this paper demonstrates once again the outstanding capabilities of the TanDEM-X system for a wide spectrum of commercial services and scientific applications in the field of the biosphere.
Journal Article
Foundational Competencies and Responsibilities of a Research Software Engineer: Current State and Suggestions for Future Directions
by
Castro, Leyla Jael
,
Wittke, Samantha
,
Hodges, Toby
in
competencies
,
curriculum design
,
Humans
2024
The term Research Software Engineer, or RSE, emerged a little over 10 years ago as a way to represent individuals working in the research community but focusing on software development. The term has been widely adopted and there are a number of high-level definitions of what an RSE is. However, the roles of RSEs vary depending on the institutional context they work in. At one end of the spectrum, RSE roles may look similar to a traditional research role. At the other extreme, they resemble that of a software engineer in industry. Most RSE roles inhabit the space between these two extremes. Therefore, providing a straightforward, comprehensive definition of what an RSE does and what experience, skills and competencies are required to become one is challenging. In this community paper we define the broad notion of what an RSE is, explore the different types of work they undertake, and define a list of foundational competencies as well as values that outline the general profile of an RSE. These foundational skills are encountered to a large extent within the skill sets of current RSEs in Germany and beyond, and we propose them as a starting point for aspiring RSEs to shape their technical profile. Further research and training can build upon this foundation of skills and focus on various aspects in greater detail. We expect that graduates and practitioners will have a larger and more diverse set of skills than outlined here. On this basis, we elaborate on the progression of these skills along different dimensions. We look at specific types of RSE roles, propose recommendations for organisations, give examples of future specialisations, and detail how existing curricula fit into this framework.
Journal Article
Foundational Competencies and Responsibilities of a Research Software Engineer
by
Castro, Leyla Jael
,
Wittke, Samantha
,
Hodges, Toby
in
competencies
,
curriculum design
,
research software engineering
2024
The term Research Software Engineer, or RSE, emerged a little over 10 years ago as a way to represent individuals working in the research community but focusing on software development. The term has been widely adopted and there are a number of high-level definitions of what an RSE is. However, the roles of RSEs vary depending on the institutional context they work in. At one end of the spectrum, RSE roles may look similar to a traditional research role. At the other extreme, they resemble that of a software engineer in industry. Most RSE roles inhabit the space between these two extremes. Therefore, providing a straightforward, comprehensive definition of what an RSE does and what experience, skills and competencies are required to become one is challenging. In this community paper we define the broad notion of what an RSE is, explore the different types of work they undertake, and define a list of foundational competencies as well as values that outline the general profile of an RSE. Further research and training can build upon this foundation of skills and focus on various aspects in greater detail. We expect that graduates and practitioners will have a larger and more diverse set of skills than outlined here. On this basis, we elaborate on the progression of these skills along different dimensions. We look at specific types of RSE roles, propose recommendations for organisations, give examples of future specialisations, and detail how existing curricula fit into this framework.
Journal Article
Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data
2017
This paper presents for the first time a detailed study on information content of X-band single-pass interferometric spaceborne SAR data with respect to snow facies characterization. An approach for classifying different snow facies of the Greenland Ice Sheet by exploiting X-band TanDEM-X interferometric synthetic aperture radar acquisitions is firstly detailed. Large-scale mosaics of radar backscatter and volume correlation factor, derived from quicklook images of the interferometric coherence, represent the starting point for applying an unsupervised classification method based on the c-means fuzzy clustering algorithm. The data was acquired during winter 2010/2011. A partition of four different snow facies was chosen and interpreted using reference melt data, snow density, and in situ measurements. The variations in the stratification and micro-structure of firn, such as the variations of density with depth and the presence of percolation features, are identified as relevant parameters for explaining the significant differences in the observed interferometric signatures among different snow facies. Moreover, a statistical analysis of backscatter and volume correlation factor provided useful parameters for characterizing the snow facies behavior and analyzing their dependency on the acquisition geometry. Finally, knowing the location and characterization of the different snow facies, the two-way X-band penetration depth over the whole Ice Sheet was estimated. The obtained mean values vary from 2.3 m for the outer snow facies up to 4.18 m for the inner one. The presented approach represents a starting point for a long-term monitoring of ice sheet dynamics, by acquiring time-series, and is of high relevance for the design of future SAR missions as well.
Journal Article
Foundational Competencies and Responsibilities of a Research Software Engineer
by
Castro, Leyla Jael
,
Wittke, Samantha
,
Hodges, Toby
in
Engineers
,
Skills
,
Software development
2024
The term Research Software Engineer, or RSE, emerged a little over 10 years ago as a way to represent individuals working in the research community but focusing on software development. The term has been widely adopted and there are a number of high-level definitions of what an RSE is. However, the roles of RSEs vary depending on the institutional context they work in. At one end of the spectrum, RSE roles may look similar to a traditional research role. At the other extreme, they resemble that of a software engineer in industry. Most RSE roles inhabit the space between these two extremes. Therefore, providing a straightforward, comprehensive definition of what an RSE does and what experience, skills and competencies are required to become one is challenging. In this community paper we define the broad notion of what an RSE is, explore the different types of work they undertake, and define a list of fundamental competencies as well as values that define the general profile of an RSE. On this basis, we elaborate on the progression of these skills along different dimensions, looking at specific types of RSE roles, proposing recommendations for organisations, and giving examples of future specialisations. An appendix details how existing curricula fit into this framework.
The Characteristic Dimension of Four-Dimensional N = 2 SCFTs
by
Zotto, Michele Del
,
Moscrop, Robert
,
Martone, Mario
in
Classical and Quantum Gravitation
,
Classification
,
Classification schemes
2023
In this paper we introduce the characteristic dimension of a four dimensional
N
=
2
superconformal field theory, which is an extraordinary simple invariant determined by the scaling dimensions of its Coulomb branch operators. We prove that only nine values of the characteristic dimension are allowed,
-
∞
, 1 ,6/5, 4/3, 3/2, 2, 3, 4, and 6, thus giving a new organizing principle to the vast landscape of 4d
N
=
2
SCFTs. Whenever the characteristic dimension differs from 1 or 2, only very constrained special Kähler geometries (i.e. isotrivial, diagonal and rigid) are compatible with the corresponding set of Coulomb branch dimensions and extremely special, maximally strongly coupled, BPS spectra are allowed for the theories which realize them. Our discussion applies to superconformal field theories of arbitrary rank,
i.e.
with Coulomb branches of any complex dimension. Along the way, we predict the existence of new
N
=
3
theories of rank two with non-trivial one-form symmetries.
Journal Article
Allowed Coulomb branch scaling dimensions of four-dimensional$$ \\mathcal{N} $$= 2 SCFTs
2025
A basic datum of a rank- r$$ \\mathcal{N} $$N =2 superconformal field theory (SCFT) is the r -tuple of its Coulomb branch scaling dimensions, i.e., the scaling dimensions of a set of special protected scalar operators whose vevs generate the coordinate ring of the Coulomb branch of the theory. It is well known that when the coordinate ring is freely generated these scaling dimensions can only take values in a small set of rational numbers. But there are further constraints on which r -tuples of these numbers can appear. The main aim of this work is to clarify what these are. Along the way we also compute explicitly the r -tuples of allowed scaling dimensions for theories of ranks r = 2, 3, 4.
Journal Article