Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
46
result(s) for
"Mas’ud, Abdullahi"
Sort by:
On the Use of Monopole Antennas for Determining the Effect of the Enclosure of a Power Transformer Tank in Partial Discharges Electromagnetic Propagation
by
Mas’ud, Abdullahi
,
Ardila-Rey, Jorge
,
Albarracín, Ricardo
in
Antennas
,
condition monitoring
,
Electrical engineering
2016
A well-defined condition-monitoring for power transformers is key to implementing a correct condition-based maintenance (CBM). In this regard, partial discharges (PD) measurement and its analysis allows to carry out on-line maintenance following the standards IEC-60270 and IEC-60076. However, new PD measurements techniques, such as acoustics or electromagnetic (EM) acquisitions using ultra-high-frequency (UHF) sensors are being taken into account, IEC-62478. PD measurements with antennas and the effect of their EM propagation in power transformer tanks is an open research topic that is considered in this paper. In this sense, an empty tank model is studied as a rectangular cavity and their resonances are calculated and compared with their measurement with a network analyser. Besides, two low cost improved monopole antennas deployed inside and outside of the tank model capture background noise and PD pulses in three different test objects (Nomex, twisted pair and insulator). The average spectrum of them are compared and can be found that mainly, the antenna frequency response, the frequency content distribution depending on the PD source and the enclosure resonances modes are the main factors to be considered in PD acquisitions with these sensors. Finally, with this set-up, it is possible to measure PD activity inside the tank from outside.
Journal Article
Application and Suitability of Polymeric Materials as Insulators in Electrical Equipment
by
Jume, Binta Hadi
,
Rahman, Habibur
,
Ardila-Rey, Jorge Alfredo
in
Breakdowns
,
Composite materials
,
Curing
2021
In this paper, the applications of thermoplastic, thermoset polymers, and a brief description of the functions of each subsystem are reviewed. The synthetic route and characteristics of polymeric materials are presented. The mechanical properties of polymers such as impact behavior, tensile test, bending test, and thermal properties like mold stress-relief distortion, generic thermal indices, relative thermal capability, and relative thermal index are mentioned. Furthermore, this paper covers the electrical behavior of polymers, mainly their dielectric strength. Different techniques for evaluating polymers’ suitability applied for electrical insulation are covered, such as partial discharge and high current arc resistance to ignition. The polymeric materials and processes used for manufacturing cables at different voltage ranges are described, and their applications to high voltage DC systems (HVDC) are discussed. The evolution and limitations of polymeric materials for electrical application and their advantages and future trends are mentioned. However, to reduce the high cost of filler networks and improve their technical properties, new techniques need to be developed. To overcome limitations associated with the accuracy of the techniques used for quantifying residual stresses in polymers, new techniques such as indentation are used with higher force at the stressed location.
Journal Article
Wind energy assessment and hybrid micro-grid optimization for selected regions of Saudi Arabia
2025
This study investigates the optimization of wind energy integration in hybrid micro grids (MGs) to address the rising demand for renewable energy, particularly in regions with limited wind potential. A comprehensive assessment of wind energy potential was conducted, and optimal sizing of standalone MGs incorporating photovoltaic (PV) systems, wind turbines (WT), and battery storage (BS) systems was performed for six regions in the Kingdom Saudi Arabia. Wind resource analysis utilizing the Weibull distribution function shows that all regions exhibited Class 1 wind energy characteristics, with average annual wind power densities ranging from 36.74 W/m² to 149.56 W/m², thereby rendering them suitable for small-scale hybrid applications. A multi-strategy serial cuckoo search algorithm was employed to evaluate three distinct configurations, and the results indicated that the integration of PV, WT, and BS yielded the most cost-effective solution for the majority of regions, achieving a levelized cost of energy of 0.148$/kWh and a loss of power supply probability below 0.05%. Notably, alternative configurations demonstrated superior reliability in locations such as Al-Baha, Taif, and Tabuk. The rseults of this study provide valuable insights into the design of scalable, sustainable, and cost-efficient hybrid MGs tailored to regions with low wind potential, thereby contributing to enhanced energy access and economic development in remote locations.
Journal Article
Optimum Configuration of a Renewable Energy System Using Multi-Year Parameters and Advanced Battery Storage Modules: A Case Study in Northern Saudi Arabia
by
Al-Garni, Hassan Zuhair
,
Mas’ud, Abdullahi Abubakar
in
Alternative energy sources
,
Analysis
,
Batteries
2021
Understanding the impact of global warming and the availability of renewable sources has motivated many countries to utilize solar and wind as an alternative to conventional energy sources. One county at the forefront in the development of these technologies is the Kingdom of Saudi Arabia (KSA). In KSA, investing in wind and solar energy is important because the country’s load demand is rapidly increasing, coupled with the over-reliance on fossil fuels. By fully utilizing the multi-year and the advanced battery storage modules in HOMER, in this paper, the techno-economic viability of utilizing a PV/wind/diesel/battery system for a remote location of Al-Jouf in the KSA has been investigated. The novelty of the work presented in this paper is that for the first time a PV/wind/diesel/battery system has been designed for the KSA, taking into account the impact of multi-year and advanced battery storage parameters such as the increase in fuel price, PV degradation, increase in the consumer load and battery degradation. Besides, due to the high temperatures experienced at Al-Jouf during the summer season, this paper investigates the sensitivity of ambient temperature on the system’s performance. The result shows that the multi-year input and battery degradation parameters have a significant impact on the system output over the 25 year lifetime of the project. PV production has dropped by 11.3%, while diesel production rose to 38% thereby increasing fuel consumption and CO2 emission. The system’s LCOE and NPC are 0.204 and USD206,919 respectively. According to the sensitivity analysis, ambient temperature has a significant impact on battery performance and PV power generation.
Journal Article
Opto electronic system for real time health evaluation of photovoltaic panels
by
Montoya, Oscar Danilo
,
Mas’ud, Abdullahi Abubakar
,
Sánchez-Squella, Antonio
in
639/166/987
,
639/4077/909/4101/4096/946
,
Alternative energy sources
2025
In this study, a novel optoelectronic system for fault detection in photovoltaic (PV) cells has been developed. Three sensors, each with a photodiode, were manufactured and mathematical models developed to interpret the fault results from the sensors. The photodiodes sweep across the PV panel to identify areas of high light intensity. The goal is to produce diagnostic images of PV panels that are comparable to standard electroluminescence (EL) imaging. Each sensor was tested under two conditions: darkness and sunlight exposure. For all the sensors, the results obtained in darkness closely match the EL images. However, PV panel exposure to sunlight produces mixed results due to differences in light intensity across the PV cells. To address this issue, two enhancement techniques were developed. First, a collector was used to improve sunlight directionality, with an improved result shown in Sensor 3. Second, a voltage step was added to the PV panel, showing an improved result in all three sensors. Among the tested combinations, the combination of Sensor 3 with an alternative collector and a step-type voltage source produced the best performance. These results clearly indicate that the sensor-based approach can effectively diagnose the PV panel health condition.
Journal Article
Application of the Gaussian Mixture Model to Classify Stages of Electrical Tree Growth in Epoxy Resin
by
Muhammad-Sukki, Firdaus
,
Ardila-Rey, Jorge Alfredo
,
Bani, Nurul Aini
in
Cameras
,
electrical trees
,
Electrodes
2021
In high-voltage (HV) insulation, electrical trees are an important degradation phenomenon strongly linked to partial discharge (PD) activity. Their initiation and development have attracted the attention of the research community and better understanding and characterization of the phenomenon are needed. They are very damaging and develop through the insulation material forming a discharge conduction path. Therefore, it is important to adequately measure and characterize tree growth before it can lead to complete failure of the system. In this paper, the Gaussian mixture model (GMM) has been applied to cluster and classify the different growth stages of electrical trees in epoxy resin insulation. First, tree growth experiments were conducted, and PD data captured from the initial to breakdown stage of the tree growth in epoxy resin insulation. Second, the GMM was applied to categorize the different electrical tree stages into clusters. The results show that PD dynamics vary with different stress voltages and tree growth stages. The electrical tree patterns with shorter breakdown times had identical clusters throughout the degradation stages. The breakdown time can be a key factor in determining the degradation levels of PD patterns emanating from trees in epoxy resin. This is important in order to determine the severity of electrical treeing degradation, and, therefore, to perform efficient asset management. The novelty of the work presented in this paper is that for the first time the GMM has been applied for electrical tree growth classification and the optimal values for the hyperparameters, i.e., the number of clusters and the appropriate covariance structure, have been determined for the different electrical tree clusters.
Journal Article
Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2
by
Ramli, Makbul A. M.
,
Mas’ud, Abdullahi A.
,
Bouchekara, Houssem R. E. H.
in
Air-turbines
,
Algorithms
,
Alternative energy sources
2023
In this paper, the Wind Farm Layout Optimization/Expansion (WFLO/E) problem is formulated in a multi-objective optimization way with specific constraints. Furthermore, a new approach is proposed and tested for the variable reduction technique in the WFLO/E problem. To solve this problem, a new method based on the hybridization of the Multi-Objective Evolutionary Algorithm Based on An Enhanced Inverted Generational Distance Metric (MOEA/IGD-NS) and the Two-Archive Algorithm 2 (Two Arch2) is developed. This approach is named (MOEA/IGD-NS/TA2). The performance of the proposed approach is tested against six case studies. For each case study, a set of solutions represented by the Pareto Front (PF) is obtained and analyzed. It can be concluded from the obtained results that the designer/planner has the freedom to select several configurations based on their experience and economic and technical constraints.
Journal Article
Solar Energy Potentials and Benefits in the Gulf Cooperation Council Countries: A Review of Substantial Issues
by
Mas’ud, Abdullahi Abubakar
,
Alshammari, Saud J.
,
Muhammad-Sukki, Firdaus
in
Alternative energy sources
,
Cooperation
,
renewable energy
2018
It is a well-known fact that the fossil fuel industry has dominated the economy of the Gulf Cooperation Council (GCC) countries during the last few decades. However, recent developments show that most of the GCC countries plan to increase the share of renewable energy (RE) in their future electrical power production. To ensure realistic increase in the share of RE in the production of electricity in the future, firm policies must be laid down with the objective to promote and market the benefit of RE to their citizens. Due to the high-solar radiation in the GCC region, the focus is now on solar energy development. This paper presents an up-to-date review of the progress made on solar energy in the GCC together with the challenges and the way forward. Some of the challenges and barriers hindering the development of RE in the GCC are in the area of technological know-how, policy development, and insufficient application of RE technology integrated in the buildings among others. Areas of improvement include promoting research and development, public/private initiatives, legislation and regulatory framework, solutions to technical issues and exchange of knowledge, scientific advice, and last but not the least is the issue of building integration with RE.
Journal Article
Design and Optimization of a Grid-Connected Solar Energy System: Study in Iraq
by
Aziz, Ali Saleh
,
Alrubaie, Ali Jawad Kadhim
,
Mas’ud, Abdullahi Abubakar
in
Alternative energy sources
,
Biomass
,
Climate change
2022
Hybrid energy systems (HESs) consisting of both conventional and renewable energy sources can help to drastically reduce fossil fuel utilization and greenhouse gas emissions. The optimal design of HESs requires a suitable control strategy to realize the design, technical, economic, and environmental objectives. The aim of this study is to investigate the optimum design of a grid-connected PV/battery HES that can address the load requirements of a residential house in Iraq. The MATLAB Link in the HOMER software was used to develop a new dispatch strategy that predicts the upcoming solar production and electricity demand. A comparison of the modified strategy with the default strategies, including load following and cycle charging in HOMER, is carried out by considering the techno-economic and environmental perspectives. According to optimization studies, the modified strategy results in the best performance with the least net present cost (USD 33,747), unmet load (87 kWh/year), grid purchases (6188 kWh/year), and CO2 emission (3913 kg/year). Finally, the sensitivity analysis was performed on various critical parameters, which are found to affect the optimum results on different scales. Taking into consideration the recent advocacy efforts aimed at achieving the sustainable development targets, the models proposed in this paper can be used for a similar system design and operation planning that allow a shift to more efficient dispatch strategies of HESs.
Journal Article
A High Speed MPPT Control Utilizing a Hybrid PSO-PID Controller under Partially Shaded Photovoltaic Battery Chargers
2023
Improving photovoltaic systems in terms of temporal responsiveness, lowering steady-state ripples, high efficiency, low complexity, and decreased tracking time under various circumstances is becoming increasingly important. A particle-swarm optimizer (PSO) is frequently used for maximum power-point tracking (MPPT) of photovoltaic (PV) energy systems. However, during partial-shadowing circumstances (PSCs), this technique has three major drawbacks. The first problem is that it slowly converges toward the maximum power point (MPP). The second issue is that the PSO is a time-invariant optimizer; therefore, when there is a time-variable shadow pattern (SP), it adheres to the first global peak instead of following the dynamic global peak (GP). The third problem is the high oscillation around the steady state. Therefore, this article proposes a hybrid PSO-PID algorithm for solving the PSO’s three challenges described above and improving the PV system’s performance under uniform irradiance and PSCs. The PID is designed to work with the PSO algorithm to observe the maximum voltage that is calculated by subtracting from the output voltage of the DC-DC boost converter and sending the variation to a PID controller, which reduces the error percentage obtained by conventional PSO and increases system efficiency by providing the precise converter-duty cycle value. The proposed hybrid PSO-PID approach is compared with a conventional PSO and bat algorithms (BAs) to show its superiority, which has the highest tracking efficiency (99.97%), the lowest power ripples (5.9 W), and the fastest response time (0.002 s). The three aforementioned issues can be successfully solved using the hybrid PSO-PID technique; it also offers good performance with shorter times and faster convergence to the dynamic GP. The results show that the developed PID is useful in enhancing the conventional PSO algorithm and solar-system performance.
Journal Article