Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Masiello, Kurt"
Sort by:
Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain
2016
Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.
Journal Article
Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder
2015
Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10–13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD.
•A mouse model of fetal alcohol disorders was evaluated for anatomical changes in cerebral cortex.•Cortex surface area was reduced, but its thickness and laminar organization were largely normal.•While total neuron number was about 8% lower, GABA neurons were >30% reduced.•The selective reduction of GABA neurons was present throughout the cerebral cortex.•Reduced GABA may contribute to cognitive deficits in fetal alcohol disorders.
Journal Article
Effects of neonatal ethanol on cerebral cortex development through adolescence
2019
Neonatal brain lesions cause deficits in structure and function of the cerebral cortex that sometimes are not fully expressed until adolescence. To better understand the onset and persistence of changes caused by postnatal day 7 (P7) ethanol treatment, we examined neocortical cell numbers, volume, surface area and thickness from neonatal to post-adolescent ages. In control mice, total neuron number decreased from P8 to reach approximately stable levels at about P30, as expected from normal programmed cell death. Cortical thickness reached adult levels by P14, but cortical volume and surface area continued to increase from juvenile (P20–30) to post-adolescent (P54–93) ages. P7 ethanol caused a reduction of total neurons by P14, but this deficit was transient, with later ages having only small and non-significant reductions. Previous studies also reported transient neuron loss after neonatal lesions that might be partially explained by an acute acceleration of normally occurring programmed cell death. GABAergic neurons expressing parvalbumin, calretinin, or somatostatin were reduced by P14, but unlike total neurons the reductions persisted or increased in later ages. Cortical volume, surface area and thickness were also reduced by P7 ethanol. Cortical volume showed evidence of a transient reduction at P14, and then was reduced again in post-adolescent ages. The results show a developmental sequence of neonatal ethanol effects. By juvenile ages the cortex overcomes the P14 deficit of total neurons, whereas P14 GABA cell deficits persist. Cortical volume reductions were present at P14, and again in post-adolescent ages.
Journal Article
Dissociation of direct and peripheral transcranial magnetic stimulation effects in nonhuman primates
2023
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent direct neural mechanisms, i.e., due to electric field or connectivity, and peripheral sensory co-stimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging due to the limited spatiotemporal resolution of available non-invasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in non-human primates to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response with stimulation intensity. We further show that stimulation responses are spatially specific. We employ several control conditions to dissociate direct neural responses from auditory and somatosensory co-activation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.
Mesoscale neural effects of transcranial magnetic stimulation
by
Perera, Nipun Dilesh
,
Butler, Brent
,
Russ, Brian E
in
Magnetic fields
,
Neuroimaging
,
Transcranial magnetic stimulation
2022
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent direct neural mechanisms and indirect sensory co-stimulation effects remain hotly debated. Understanding how TMS modulates neural activity at different scales and how stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging due to the limited spatiotemporal resolution of available non-invasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in non-human primates and show that mesoscale early TMS-evoked potentials are dose and location dependent. Further, we employ several control conditions to dissociate direct neural responses from auditory and somatosensory co-activation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.Competing Interest StatementThe authors have declared no competing interest.