Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Masuko, Soh"
Sort by:
MEC/Cloud Orchestrator to Facilitate Private/Local Beyond 5G with MEC and Proof-of-Concept Implementation
The emergence of 5G-IoT opens up unprecedented connectivity possibilities for new service use cases and players. Multi-access edge computing (MEC) is a crucial technology and enabler for Beyond 5G, supporting next-generation communications with service guarantees (e.g., ultra-low latency, high security) from an end-to-end (E2E) perspective. On the other hand, one notable advance is the platform that supports virtualization from RAN to applications. Deploying Radio Access Networks (RAN) and MEC, including third-party applications on virtualization platforms, and renting other equipment from legacy telecom operators will make it easier for new telecom operators, called Private/Local Telecom Operators, to join the ecosystem. Our preliminary studies have discussed the ecosystem for private and local telecom operators regarding business potential and revenue and provided numerical results. What remains is how Private/Local Telecom Operators can manage and deploy their MEC applications. In this paper, we designed the architecture for fully virtualized MEC 5G cellular networks with local use cases (e.g., stadiums, campuses). We propose an MEC/Cloud Orchestrator implementation for intelligent deployment selection. In addition, we provide implementation schemes in several cases held by either existing cloud owners or private and local operators. In order to verify the proposal’s feasibility, we designed the system level in E2E and constructed a Beyond 5G testbed at the Ōokayama Campus of the Tokyo Institute of Technology. Through proof-of-concept in the outdoor field, the proposed system’s feasibility is verified by E2E performance evaluation. The verification results prove that the proposed approach can reduce latency and provide a more stable throughput than conventional cloud services.
Comparing VR- and AR-Based Try-On Systems Using Personalized Avatars
Despite the convenience offered by e-commerce, online apparel shopping presents various product-related risks, as consumers can neither physically see nor try products on themselves. Augmented reality (AR) and virtual reality (VR) technologies have been used to improve the shopping online experience. Therefore, we propose an AR- and VR-based try-on system that provides users a novel shopping experience where they can view garments fitted onto their personalized virtual body. Recorded personalized motions are used to allow users to dynamically interact with their dressed virtual body in AR. We conducted two user studies to compare the different roles of VR- and AR-based try-ons and validate the impact of personalized motions on the virtual try-on experience. In the first user study, the mobile application with the AR- and VR-based try-on is compared to a traditional e-commerce interface. In the second user study, personalized avatars with pre-defined motion and personalized motion is compared to a personalized no-motion avatar with AR-based try-on. The result shows that AR- and VR-based try-ons can positively influence the shopping experience, compared with the traditional e-commerce interface. Overall, AR-based try-on provides a better and more realistic garment visualization than VR-based try-on. In addition, we found that personalized motions do not directly affect the user’s shopping experience.