Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
175
result(s) for
"Mathalon, Daniel H"
Sort by:
Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis
by
Sui, Jing
,
Mathalon, Daniel H.
,
Fryer, Susanna L.
in
Adult
,
Biomarkers
,
Brain - diagnostic imaging
2018
Individuals at clinical high-risk (CHR) for psychosis are characterized by attenuated psychotic symptoms. Only a minority of CHR individuals convert to full-blown psychosis. Therefore, there is a strong interest in identifying neurobiological abnormalities underlying the psychosis risk syndrome. Dynamic functional connectivity (DFC) captures time-varying connectivity over short time scales, and has the potential to reveal complex brain functional organization. Based on resting-state functional magnetic resonance imaging (fMRI) data from 70 healthy controls (HCs), 53 CHR individuals, and 58 early illness schizophrenia (ESZ) patients, we applied a novel group information guided ICA (GIG-ICA) to estimate inherent connectivity states from DFC, and then investigated group differences. We found that ESZ patients showed more aberrant connectivities and greater alterations than CHR individuals. Results also suggested that disease-related connectivity states occurred in CHR and ESZ groups. Regarding the dominant state with the highest contribution to dynamic connectivity, ESZ patients exhibited greater impairments than CHR individuals primarily in the cerebellum, frontal cortex, thalamus and temporal cortex, while CHR and ESZ populations shared common aberrances mainly in the supplementary motor area, parahippocampal gyrus and postcentral cortex. CHR-specific changes were also found in the connections between the superior frontal gyrus and calcarine cortex in the dominant state. Our findings suggest that CHR individuals generally show an intermediate functional connectivity pattern between HCs and SZ patients but also have unique connectivity alterations.
Journal Article
Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study
2021
•Periodic and aperiodic EEG parameters associated with distinct resting-state networks.•Increases in aperiodic power associated with an auditory-salience-cerebellar network.•Decreases in aperiodic power associated with prefrontal regions.•Global neural excitability may reflect stimulus processing or arousal attributable to the uniqueness of the resting-state MR-scanner environment.
The hallmark of resting EEG spectra are distinct rhythms emerging from a broadband, aperiodic background. This aperiodic neural signature accounts for most of total EEG power, although its significance and relation to functional neuroanatomy remains obscure. We hypothesized that aperiodic EEG reflects a significant metabolic expenditure and therefore might be associated with the default mode network while at rest. During eyes-open, resting-state recordings of simultaneous EEG-fMRI, we find that aperiodic and periodic components of EEG power are only minimally associated with activity in the default mode network. However, a whole-brain analysis identifies increases in aperiodic power correlated with hemodynamic activity in an auditory-salience-cerebellar network, and decreases in aperiodic power are correlated with hemodynamic activity in prefrontal regions. Desynchronization in residual alpha and beta power is associated with visual and sensorimotor hemodynamic activity, respectively. These findings suggest that resting-state EEG signals acquired in an fMRI scanner reflect a balance of top-down and bottom-up stimulus processing, even in the absence of an explicit task.
Journal Article
A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology
by
Womelsdorf Thilo
,
Siegel, Steven J
,
Mathalon, Daniel H
in
Animal models
,
Biomarkers
,
Event-related potentials
2020
New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional “time-domain” event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies. By contrast, neuro-oscillatory responses, analyzed within the “time-frequency” domain, are relatively preserved across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory responses as translational biomarkers in neuropsychiatric treatment development.
Journal Article
Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
by
Jiang, Tianzi
,
O’Leary, Daniel S.
,
McMahon, Agnes
in
59/57
,
631/378/1689/1799
,
631/378/2649/2150
2018
Cognitive impairment is a feature of many psychiatric diseases, including schizophrenia. Here we aim to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls. A supervised learning strategy is used to guide three-way multimodal magnetic resonance imaging (MRI) fusion in two independent cohorts including both healthy individuals and individuals with schizophrenia using multiple cognitive domain scores. Results highlight the salience network (gray matter, GM), corpus callosum (fractional anisotropy, FA), central executive and default-mode networks (fractional amplitude of low-frequency fluctuation, fALFF) as modality-specific biomarkers of generalized cognition. FALFF features are found to be more sensitive to cognitive domain differences, while the salience network in GM and corpus callosum in FA are highly consistent and predictive of multiple cognitive domains. These modality-specific brain regions define—in three separate cohorts—promising co-varying multimodal signatures that can be used as predictors of multi-domain cognition.
Cognitive impairment is a feature of many psychiatric diseases. Here the authors aimed to identify multimodal neuromarkers that can be used to quantify and predict cognitive performance in individuals with schizophrenia using three different features of MRI and three independent cohorts.
Journal Article
Salience–Default Mode Functional Network Connectivity Linked to Positive and Negative Symptoms of Schizophrenia
2019
Schizophrenia is a complex, debilitating mental disorder characterized by wide-ranging symptoms including delusions, hallucinations (so-called positive symptoms), and impaired motor and speech/language production (so-called negative symptoms). Salience-monitoring theorists propose that abnormal functional communication between the salience network (SN) and default mode network (DMN) begets positive and negative symptoms of schizophrenia, yet prior studies have predominately reported links between disrupted SN/DMN functional communication and positive symptoms. It remains unclear whether disrupted SN/DMN functional communication explains (1) solely positive symptoms or (2) both positive and negative symptoms of schizophrenia. To address this question, we incorporate time-lag-shifted functional network connectivity (FNC) analyses that explored coherence of the resting-state functional magnetic resonance imaging signal of 3 networks (anterior DMN, posterior DMN, and SN) with fixed time lags introduced between network time series (1 TR = 2 s; 2 TR = 4 s). Multivariate linear regression analysis revealed that severity of disordered thought and attentional deficits were negatively associated with 2 TR-shifted FNC between anterior DMN and posterior DMN. Meanwhile, severity of flat affect and bizarre behavior were positively associated with 1 TR-shifted FNC between anterior DMN and SN. These results provide support favoring the hypothesis that lagged SN/DMN functional communication is associated with both positive and negative symptoms of schizophrenia.
Journal Article
A Randomized Controlled Trial of Mindfulness-Based Cognitive Therapy for Treatment-Resistant Depression
2016
Background: Due to the clinical challenges of treatment-resistant depression (TRD), we evaluated the efficacy of mindfulness-based cognitive therapy (MBCT) relative to a structurally equivalent active comparison condition as adjuncts to treatment-as-usual (TAU) pharmacotherapy in TRD. Methods: This single-site, randomized controlled trial compared 8-week courses of MBCT and the Health Enhancement Program (HEP), comprising physical fitness, music therapy and nutritional education, as adjuncts to TAU pharmacotherapy for outpatient adults with TRD. The primary outcome was change in depression severity, measured by percent reduction in the total score on the 17-item Hamilton Depression Rating Scale (HAM-D 17 ), with secondary depression indicators of treatment response and remission. Results: We enrolled 173 adults; mean length of a current depressive episode was 6.8 years (SD = 8.9). At the end of 8 weeks of treatment, a multivariate analysis showed that relative to the HEP condition, the MBCT condition was associated with a significantly greater mean percent reduction in the HAM-D 17 (36.6 vs. 25.3%; p = 0.01) and a significantly higher rate of treatment responders (30.3 vs. 15.3%; p = 0.03). Although numerically superior for MBCT than for HEP, the rates of remission did not significantly differ between treatments (22.4 vs. 13.9%; p = 0.15). In these models, state anxiety, perceived stress and the presence of personality disorder had adverse effects on outcomes. Conclusions: MBCT significantly decreased depression severity and improved treatment response rates at 8 weeks but not remission rates. MBCT appears to be a viable adjunct in the management of TRD.
Journal Article
Augmenting NMDA receptor signaling boosts experience-dependent neuroplasticity in the adult human brain
by
Mathalon, Daniel H.
,
Roach, Brian J.
,
Forsyth, Jennifer K.
in
Adult
,
Adults
,
Biological Sciences
2015
Experience-dependent plasticity is a fundamental property of the brain. It is critical for everyday function, is impaired in a range of neurological and psychiatric disorders, and frequently depends on long-term potentiation (LTP). Preclinical studies suggest that augmentingN-methyl-D-aspartate receptor (NMDAR) signaling may promote experience-dependent plasticity; however, a lack of noninvasive methods has limited our ability to test this idea in humans until recently. We examined the effects of enhancing NMDAR signaling using D-cycloserine (DCS) on a recently developed LTP EEG paradigm that uses high-frequency visual stimulation (HFvS) to induce neural potentiation in visual cortex neurons, as well as on three cognitive tasks: a weather prediction task (WPT), an information integration task (IIT), and an-back task. The WPT and IIT are learning tasks that require practice with feedback to reach optimal performance. Then-back assesses working memory. Healthy adults were randomized to receive DCS (100 mg;n= 32) or placebo (n= 33); groups were similar in IQ and demographic characteristics. Participants who received DCS showed enhanced potentiation of neural responses following repetitive HFvS, as well as enhanced performance on the WPT and IIT. Groups did not differ on then-back. Augmenting NMDAR signaling using DCS therefore enhanced activity-dependent plasticity in human adults, as demonstrated by lasting enhancement of neural potentiation following repetitive HFvS and accelerated acquisition of two learning tasks. Results highlight the utility of considering cellular mechanisms underlying distinct cognitive functions when investigating potential cognitive enhancers.
Journal Article
Accelerated cortical thinning precedes and predicts conversion to psychosis: The NAPLS3 longitudinal study of youth at clinical high-risk
2023
Progressive grey matter loss has been demonstrated among clinical high-risk (CHR) individuals who convert to psychosis, but it is unknown whether these changes occur prior to psychosis onset. Identifying illness-related neurobiological mechanisms that occur prior to conversion is essential for targeted early intervention. Among participants in the third wave of the North American Prodrome Longitudinal Study (NAPLS3), this report investigated if steeper cortical thinning was observable prior to psychosis onset among CHR individuals who ultimately converted (CHR-C) and assessed the shortest possible time interval in which rates of cortical thinning differ between CHR-C, CHR non-converters (CHR-NC), and health controls (HC). 338 CHR-NC, 42 CHR-C, and 62 HC participants (age 19.3±4.2, 44.8% female, 52.5% racial/ethnic minority) completed up to 5 MRI scans across 8 months. Accelerated thinning among CHR-C compared to CHR-NC and HC was observed in multiple prefrontal, temporal, and parietal cortical regions. CHR-NC also exhibited accelerated cortical thinning compared to HC in several of these areas. Greater percent decrease in cortical thickness was observed among CHR-C compared to other groups across 2.9±1.8 months, on average, in several cortical areas. ROC analyses discriminating CHR-C from CHR-NC by percent thickness change in a left hemisphere region of interest, scanner, age, age
2
, and sex had an AUC of 0.74, with model predictive power driven primarily by percent thickness change. Findings indicate that accelerated cortical thinning precedes psychosis onset and differentiates CHR-C from CHR-NC and HC across short time intervals. Mechanisms underlying cortical thinning may provide novel treatment targets prior to psychosis onset.
Journal Article
The Scanner as the Stimulus: Deficient Gamma-BOLD Coupling in Schizophrenia at Rest
by
Roach, Brian J
,
Sargent, Kaia
,
Mathalon, Daniel H
in
Arousal
,
Brain - diagnostic imaging
,
Brain Mapping - methods
2023
Abstract
Functional magnetic resonance imaging (fMRI) scanners are unavoidably loud and uncomfortable experimental tools that are necessary for schizophrenia (SZ) neuroscience research. The validity of fMRI paradigms might be undermined by well-known sensory processing abnormalities in SZ that could exert distinct effects on neural activity in the presence of scanner background sound. Given the ubiquity of resting-state fMRI (rs-fMRI) paradigms in SZ research, elucidating the relationship between neural, hemodynamic, and sensory processing deficits during scanning is necessary to refine the construct validity of the MR neuroimaging environment. We recorded simultaneous electroencephalography (EEG)-fMRI at rest in people with SZ (n = 57) and healthy control participants without a psychiatric diagnosis (n = 46) and identified gamma EEG activity in the same frequency range as the background sounds emitted from our scanner during a resting-state sequence. In participants with SZ, gamma coupling to the hemodynamic signal was reduced in bilateral auditory regions of the superior temporal gyri. Impaired gamma-hemodynamic coupling was associated with sensory gating deficits and worse symptom severity. Fundamental sensory-neural processing deficits in SZ are present at rest when considering scanner background sound as a “stimulus.” This finding may impact the interpretation of rs-fMRI activity in studies of people with SZ. Future neuroimaging research in SZ might consider background sound as a confounding variable, potentially related to fluctuations in neural excitability and arousal.
Journal Article
Deficient auditory predictive coding during vocalization in the psychosis risk syndrome and in early illness schizophrenia: the final expanded sample
2019
During vocalization, efference copy/corollary discharge mechanisms suppress the auditory cortical response to self-generated sounds. Previously, we found attenuated vocalization-related auditory cortical suppression in psychosis and a similar trend in the psychosis risk syndrome. Here, we report data from the final sample of early illness schizophrenia patients (ESZ), individuals at clinical high risk for psychosis (CHR), and healthy controls (HC).
Event-related potentials (ERP) were recorded from ESZ (n = 84), CHR (n = 71), and HC (n = 103) participants during a vocalization paradigm. The N1 ERP component was elicited during production (Talk) and playback (Listen) of vocalization. Age effects on N1 suppression (Talk-Listen), Talk N1, and Listen N1 were compared across groups. N1 measures were adjusted for normal aging before testing for group differences.
Both ESZ and CHR groups showed reduced Talk-Listen N1 suppression relative to HC, but did not differ from each other. Listen N1 was reduced in ESZ, but not in CHR, relative to HC. Deficient Talk-Listen N1 suppression was associated with greater unusual thought content in CHR individuals. N1 suppression increased with age in HC (12-36 years), and while CHR individuals showed a similar age-related increase, no such relationship was evident in ESZ.
Putative efference copy/corollary discharge-mediated auditory cortical suppression during vocalization is deficient in ESZ and precedes psychosis onset, particularly in CHR individuals with greater unusual thought content. Furthermore, this suppression increases from adolescence through early adulthood, likely reflecting the effects of normal brain maturation. This maturation effect is disrupted in ESZ, presumably due to countervailing illness effects.
Journal Article