Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
204 result(s) for "Mathers, Colin"
Sort by:
History of global burden of disease assessment at the World Health Organization
Background The World Health Organization collaborated in the first Global Burden of Disease Study (GBD), published in the 1993 World Development Report. This paper summarizes the substantial methodological improvements and expanding scope of GBD work carried out by WHO over the next 25 years. Methods This review is based on a review of WHO and UN interagency work relating to Global Burden of Disease over the last 20 years, supplemented by a literature review of published papers and commentaries on global burden of disease activities and the production of global health statistics. Results WHO development of global burden of disease work in the Millenium Development Goal era resulted in regular publication of time series estimates of deaths by cause, age and sex at country level, consistent with UN population and life table estimates, and with cause-specific statistics produced across UN agencies and interagency collaborations. This positioned WHO as the lead agency to monitor many of the 43 health-related indicators for the UN Sustainable Development Goals. In 2007, the Institute of Health Metrics and Evaluation (IHME) was established to conduct new global burden of disease and related work, funded by the Bill and Melinda Gates Foundation (BMGF). WHO was a core collaborator in its first GBD2010 study, but withdrew prior to publication as it was unable to obtain full access input data and methods. The publication of global health statistics by IHME resulted in user confusion and in debate over differences and the reasons for them. The new WHO administration of Director General Dr. Tedros Ghebreyesus has sought to make greater use of IHME outputs for its global health statistics and SDG monitoring. Conclusions WHO work on global burden of disease has positioned it to be the lead agency for monitoring many of the UN Sustainable Development Goals. Current moves to use IHME analyses raises a number of issues for WHO and for Member States in relation to WHO’s constitutional mandate, its accountability to Member States, the consistency of WHO and UN demographic and health statistics, and the ability of Member States to engage with the results of the complex and computer-intensive modelling procedures used by IHME. As new global health actors and funders have arisen in recent decades, and funding to carry out WHO’s expanding mandate has declined, it is unclear whether WHO has the ability or desire to continue as the lead agency for global health statistics.
Projections of Global Mortality and Burden of Disease from 2002 to 2030
Background Global and regional projections of mortality and burden of disease by cause for the years 2000, 2010, and 2030 were published by Murray and Lopez in 1996 as part of the Global Burden of Disease project. These projections, which are based on 1990 data, continue to be widely quoted, although they are substantially outdated; in particular, they substantially underestimated the spread of HIV/AIDS. To address the widespread demand for information on likely future trends in global health, and thereby to support international health policy and priority setting, we have prepared new projections of mortality and burden of disease to 2030 starting from World Health Organization estimates of mortality and burden of disease for 2002. This paper describes the methods, assumptions, input data, and results. Methods and Findings Relatively simple models were used to project future health trends under three scenarios--baseline, optimistic, and pessimistic--based largely on projections of economic and social development, and using the historically observed relationships of these with cause-specific mortality rates. Data inputs have been updated to take account of the greater availability of death registration data and the latest available projections for HIV/AIDS, income, human capital, tobacco smoking, body mass index, and other inputs. In all three scenarios there is a dramatic shift in the distribution of deaths from younger to older ages and from communicable, maternal, perinatal, and nutritional causes to noncommunicable disease causes. The risk of death for children younger than 5 y is projected to fall by nearly 50% in the baseline scenario between 2002 and 2030. The proportion of deaths due to noncommunicable disease is projected to rise from 59% in 2002 to 69% in 2030. Global HIV/AIDS deaths are projected to rise from 2.8 million in 2002 to 6.5 million in 2030 under the baseline scenario, which assumes coverage with antiretroviral drugs reaches 80% by 2012. Under the optimistic scenario, which also assumes increased prevention activity, HIV/AIDS deaths are projected to drop to 3.7 million in 2030. Total tobacco-attributable deaths are projected to rise from 5.4 million in 2005 to 6.4 million in 2015 and 8.3 million in 2030 under our baseline scenario. Tobacco is projected to kill 50% more people in 2015 than HIV/AIDS, and to be responsible for 10% of all deaths globally. The three leading causes of burden of disease in 2030 are projected to include HIV/AIDS, unipolar depressive disorders, and ischaemic heart disease in the baseline and pessimistic scenarios. Road traffic accidents are the fourth leading cause in the baseline scenario, and the third leading cause ahead of ischaemic heart disease in the optimistic scenario. Under the baseline scenario, HIV/AIDS becomes the leading cause of burden of disease in middle- and low-income countries by 2015. Conclusions These projections represent a set of three visions of the future for population health, based on certain explicit assumptions. Despite the wide uncertainty ranges around future projections, they enable us to appreciate better the implications for health and health policy of currently observed trends, and the likely impact of fairly certain future trends, such as the ageing of the population, the continued spread of HIV/AIDS in many regions, and the continuation of the epidemiological transition in developing countries. The results depend strongly on the assumption that future mortality trends in poor countries will have a relationship to economic and social development similar to those that have occurred in the higher-income countries.
Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble
Projections of future mortality and life expectancy are needed to plan for health and social services and pensions. Our aim was to forecast national age-specific mortality and life expectancy using an approach that takes into account the uncertainty related to the choice of forecasting model. We developed an ensemble of 21 forecasting models, all of which probabilistically contributed towards the final projections. We applied this approach to project age-specific mortality to 2030 in 35 industrialised countries with high-quality vital statistics data. We used age-specific death rates to calculate life expectancy at birth and at age 65 years, and probability of dying before age 70 years, with life table methods. Life expectancy is projected to increase in all 35 countries with a probability of at least 65% for women and 85% for men. There is a 90% probability that life expectancy at birth among South Korean women in 2030 will be higher than 86·7 years, the same as the highest worldwide life expectancy in 2012, and a 57% probability that it will be higher than 90 years. Projected female life expectancy in South Korea is followed by those in France, Spain, and Japan. There is a greater than 95% probability that life expectancy at birth among men in South Korea, Australia, and Switzerland will surpass 80 years in 2030, and a greater than 27% probability that it will surpass 85 years. Of the countries studied, the USA, Japan, Sweden, Greece, Macedonia, and Serbia have some of the lowest projected life expectancy gains for both men and women. The female life expectancy advantage over men is likely to shrink by 2030 in every country except Mexico, where female life expectancy is predicted to increase more than male life expectancy, and in Chile, France, and Greece where the two sexes will see similar gains. More than half of the projected gains in life expectancy at birth in women will be due to enhanced longevity above age 65 years. There is more than a 50% probability that by 2030, national female life expectancy will break the 90 year barrier, a level that was deemed unattainable by some at the turn of the 21st century. Our projections show continued increases in longevity, and the need for careful planning for health and social services and pensions. UK Medical Research Council and US Environmental Protection Agency.
Acting on non-communicable diseases in low- and middle-income tropical countries
The classical portrayal of poor health in tropical countries is one of infections and parasites, contrasting with wealthy Western countries, where unhealthy diet and behaviours cause non-communicable diseases (NCDs) such as heart disease and cancer. Using international mortality data, we show that most NCDs cause more deaths at every age in low- and middle-income tropical countries than in high-income Western countries. Causes of NCDs in low- and middle-income countries include poor nutrition and living environment, infections, insufficient taxation and regulation of tobacco and alcohol, and under-resourced and inaccessible healthcare. We identify a comprehensive set of actions across health, social, economic and environmental sectors that could confront NCDs in low- and middle-income tropical countries and reduce global health inequalities.
Guidelines for Accurate and Transparent Health Estimates Reporting: the GATHER statement
Measurements of health indicators are rarely available for every population and period of interest, and available data may not be comparable. The Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) define best reporting practices for studies that calculate health estimates for multiple populations (in time or space) using multiple information sources. Health estimates that fall within the scope of GATHER include all quantitative population-level estimates (including global, regional, national, or subnational estimates) of health indicators, including indicators of health status, incidence and prevalence of diseases, injuries, and disability and functioning; and indicators of health determinants, including health behaviours and health exposures. GATHER comprises a checklist of 18 items that are essential for best reporting practice. A more detailed explanation and elaboration document, describing the interpretation and rationale of each reporting item along with examples of good reporting, is available on the GATHER website.
Causes of international increases in older age life expectancy
In high-income countries, life expectancy at age 60 years has increased in recent decades. Falling tobacco use (for men only) and cardiovascular disease mortality (for both men and women) are the main factors contributing to this rise. In high-income countries, avoidable male mortality has fallen since 1980 because of decreases in avoidable cardiovascular deaths. For men in Latin America, the Caribbean, Europe, and central Asia, and for women in all regions, avoidable mortality has changed little or increased since 1980. As yet, no evidence exists that the rate of improvement in older age mortality (60 years and older) is slowing down or that older age deaths are being compressed into a narrow age band as they approach a hypothesised upper limit to longevity.
Global burden of disease in young people aged 10–24 years: a systematic analysis
Young people aged 10–24 years represent 27% of the world's population. Although important health problems and risk factors for disease in later life emerge in these years, the contribution to the global burden of disease is unknown. We describe the global burden of disease arising in young people and the contribution of risk factors to that burden. We used data from WHO's 2004 Global Burden of Disease study. Cause-specific disability-adjusted life-years (DALYs) for young people aged 10–24 years were estimated by WHO region on the basis of available data for incidence, prevalence, severity, and mortality. WHO member states were classified into low-income, middle-income, and high-income countries, and into WHO regions. We estimated DALYs attributable to specific global health risk factors using the comparative risk assessment method. DALYs were divided into years of life lost because of premature mortality (YLLs) and years lost because of disability (YLDs), and are presented for regions by sex and by 5-year age groups. The total number of incident DALYs in those aged 10–24 years was about 236 million, representing 15·5% of total DALYs for all age groups. Africa had the highest rate of DALYs for this age group, which was 2·5 times greater than in high-income countries (208 vs 82 DALYs per 1000 population). Across regions, DALY rates were 12% higher in girls than in boys between 15 and 19 years (137 vs 153). Worldwide, the three main causes of YLDs for 10–24-year-olds were neuropsychiatric disorders (45%), unintentional injuries (12%), and infectious and parasitic diseases (10%). The main risk factors for incident DALYs in 10–24-year-olds were alcohol (7% of DALYs), unsafe sex (4%), iron deficiency (3%), lack of contraception (2%), and illicit drug use (2%). The health of young people has been largely neglected in global public health because this age group is perceived as healthy. However, opportunities for prevention of disease and injury in this age group are not fully exploited. The findings from this study suggest that adolescent health would benefit from increased public health attention. None.
Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries
The Coronavirus Disease 2019 (COVID-19) pandemic has changed many social, economic, environmental and healthcare determinants of health. We applied an ensemble of 16 Bayesian models to vital statistics data to estimate the all-cause mortality effect of the pandemic for 21 industrialized countries. From mid-February through May 2020, 206,000 (95% credible interval, 178,100–231,000) more people died in these countries than would have had the pandemic not occurred. The number of excess deaths, excess deaths per 100,000 people and relative increase in deaths were similar between men and women in most countries. England and Wales and Spain experienced the largest effect: ~100 excess deaths per 100,000 people, equivalent to a 37% (30–44%) relative increase in England and Wales and 38% (31–45%) in Spain. Bulgaria, New Zealand, Slovakia, Australia, Czechia, Hungary, Poland, Norway, Denmark and Finland experienced mortality changes that ranged from possible small declines to increases of 5% or less in either sex. The heterogeneous mortality effects of the COVID-19 pandemic reflect differences in how well countries have managed the pandemic and the resilience and preparedness of the health and social care system. Application of Bayesian models to vital statistics data from 21 industrialized countries shows that approximately 206,000 additional people died than if the COVID-19 pandemic had not occured. The heterogeneous distribution of excess deaths across the countries reflects differences in how the pandemic has been managed as well as the resilience of healthcare systems in these nations.
NCD Countdown 2030: pathways to achieving Sustainable Development Goal target 3.4
The Sustainable Development Goal (SDG) target 3.4 is to reduce premature mortality from non-communicable diseases (NCDs) by a third by 2030 relative to 2015 levels, and to promote mental health and wellbeing. We used data on cause-specific mortality to characterise the risk and trends in NCD mortality in each country and evaluate combinations of reductions in NCD causes of death that can achieve SDG target 3.4. Among NCDs, ischaemic heart disease is responsible for the highest risk of premature death in more than half of all countries for women, and more than three-quarters for men. However, stroke, other cardiovascular diseases, and some cancers are associated with a similar risk, and in many countries, a higher risk of premature death than ischaemic heart disease. Although premature mortality from NCDs is declining in most countries, for most the pace of change is too slow to achieve SDG target 3.4. To investigate the options available to each country for achieving SDG target 3.4, we considered different scenarios, each representing a combination of fast (annual rate achieved by the tenth best performing percentile of all countries) and average (median of all countries) declines in risk of premature death from NCDs. Pathways analysis shows that every country has options for achieving SDG target 3.4. No country could achieve the target by addressing a single disease. In at least half the countries, achieving the target requires improvements in the rate of decline in at least five causes for women and in at least seven causes for men to the same rate achieved by the tenth best performing percentile of all countries. Tobacco and alcohol control and effective health-system interventions—including hypertension and diabetes treatment; primary and secondary cardiovascular disease prevention in high-risk individuals; low-dose inhaled corticosteroids and bronchodilators for asthma and chronic obstructive pulmonary disease; treatment of acute cardiovascular diseases, diabetes complications, and exacerbations of asthma and chronic obstructive pulmonary disease; and effective cancer screening and treatment—will reduce NCD causes of death necessary to achieve SDG target 3.4 in most countries.
NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4
The third UN High-Level Meeting on Non-Communicable Diseases (NCDs) on Sept 27, 2018, will review national and global progress towards the prevention and control of NCDs, and provide an opportunity to renew, reinforce, and enhance commitments to reduce their burden. NCD Countdown 2030 is an independent collaboration to inform policies that aim to reduce the worldwide burden of NCDs, and to ensure accountability towards this aim. In 2016, an estimated 40·5 million (71%) of the 56·9 million worldwide deaths were from NCDs. Of these, an estimated 1·7 million (4% of NCD deaths) occurred in people younger than 30 years of age, 15·2 million (38%) in people aged between 30 years and 70 years, and 23·6 million (58%) in people aged 70 years and older. An estimated 32·2 million NCD deaths (80%) were due to cancers, cardiovascular diseases, chronic respiratory diseases, and diabetes, and another 8·3 million (20%) were from other NCDs. Women in 164 (88%) and men in 165 (89%) of 186 countries and territories had a higher probability of dying before 70 years of age from an NCD than from communicable, maternal, perinatal, and nutritional conditions combined. Globally, the lowest risks of NCD mortality in 2016 were seen in high-income countries in Asia-Pacific, western Europe, and Australasia, and in Canada. The highest risks of dying from NCDs were observed in low-income and middle-income countries, especially in sub-Saharan Africa, and, for men, in central Asia and eastern Europe. Sustainable Development Goal (SDG) target 3.4—a one-third reduction, relative to 2015 levels, in the probability of dying between 30 years and 70 years of age from cancers, cardiovascular diseases, chronic respiratory diseases, and diabetes by 2030—will be achieved in 35 countries (19%) for women, and 30 (16%) for men, if these countries maintain or surpass their 2010–2016 rate of decline in NCD mortality. Most of these are high-income countries with already-low NCD mortality, and countries in central and eastern Europe. An additional 50 (27%) countries for women and 35 (19%) for men are projected to achieve such a reduction in the subsequent decade, and thus, with slight acceleration of decline, could meet the 2030 target. 86 (46%) countries for women and 97 (52%) for men need implementation of policies that substantially increase the rates of decline. Mortality from the four NCDs included in SDG target 3.4 has stagnated or increased since 2010 among women in 15 (8%) countries and men in 24 (13%) countries. NCDs and age groups other than those included in the SDG target 3.4 are responsible for a higher risk of death in low-income and middle-income countries than in high-income countries. Substantial reduction of NCD mortality requires policies that considerably reduce tobacco and alcohol use and blood pressure, and equitable access to efficacious and high-quality preventive and curative care for acute and chronic NCDs.