Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
72 result(s) for "Mathur, Harsh"
Sort by:
Health Benefits of Lactic Acid Bacteria (LAB) Fermentates
Consuming fermented foods has been reported to result in improvements in a range of health parameters. These positive effects can be exerted by a combination of the live microorganisms that the fermented foods contain, as well as the bioactive components released into the foods as by-products of the fermentation process. In many instances, and particularly in dairy fermented foods, the microorganisms involved in the fermentation process belong to the lactic acid group of bacteria (LAB). An alternative approach to making some of the health benefits that have been attributed to fermented foods available is through the production of ‘fermentates’. The term ‘fermentate’ generally relates to a powdered preparation, derived from a fermented product and which can contain the fermenting microorganisms, components of these microorganisms, culture supernatants, fermented substrates, and a range of metabolites and bioactive components with potential health benefits. Here, we provide a brief overview of a selection of in vitro and in vivo studies and patents exclusively reporting the health benefits of LAB ‘fermentates’. Typically, in such studies, the potential health benefits have been attributed to the bioactive metabolites present in the crude fermentates and/or culture supernatants rather than the direct effects of the LAB strain(s) involved.
The radial acceleration relation and a magnetostatic analogy in quasilinear MOND
Recently a remarkable relation has been demonstrated between the observed radial acceleration in disk galaxies and the acceleration predicted on the basis of baryonic matter alone. Here we study this relation within the framework of the modified gravity model MOND. The field equations of MOND automatically imply the radial acceleration relation (RAR) for spherically symmetric galaxies, but for disk galaxies deviations from the relation are expected. Here we investigate whether these deviations are of sufficient magnitude to bring MOND into conflict with the observed relation. In the quasilinear formulation of MOND, to calculate the gravitational field of a given distribution of matter, an intermediate step is to calculate the 'pristine field', which is a simple nonlinear function of the Newtonian field corresponding to the same distribution of matter. Hence, to the extent that the quasilinear gravitational field is approximately equal to the pristine field, the RAR will be satisfied. We show that the difference between the quasilinear and pristine fields obeys the equations of magnetostatics; the curl of the pristine field serves as the source for the difference in the two fields, much as currents serve as sources for the magnetic field. Using the magnetostatic analogy we numerically study the difference between the pristine and quasilinear fields for simple model galaxies with a Gaussian profile. Our principal finding is that the difference between the fields is small compared to the observational uncertainties and that quasilinear MOND is therefore compatible with the observed RAR.
Modulation of the gut microbiome with nisin
Nisin is a broad spectrum bacteriocin used extensively as a food preservative that was identified in Lactococcus lactis nearly a century ago. We show that orally-ingested nisin survives transit through the porcine gastrointestinal tract intact (as evidenced by activity and molecular weight determination) where it impacts both the composition and functioning of the microbiota. Specifically, nisin treatment caused a reversible decrease in Gram positive bacteria, resulting in a reshaping of the Firmicutes and a corresponding relative increase in Gram negative Proteobacteria. These changes were mirrored by the modification in relative abundance of pathways involved in acetate, butyrate (decreased) and propionate (increased) synthesis which correlated with overall reductions in short chain fatty acid levels in stool. These reversible changes that occur as a result of nisin ingestion demonstrate the potential of bacteriocins like nisin to shape mammalian microbiomes and impact on the functionality of the community.
Vibrational spectrum of Granular packings with random matrices
The vibrational spectrum of granular packings can be used as a signature of the jamming transition, with the density of states at zero frequency becoming nonzero at the transition. It has been proposed previously that the vibrational spectrum of granular packings can be approximately obtained from random matrix theory. Here, we show that the autocorrelation function of the density of states shows good agreement between dynamical numerical simulations of frictionless bead packs near the jamming point and the analytic predictions of the Laguerre orthogonal ensemble of random matrices; there is clear disagreement with the Gaussian orthogonal ensemble, establishing that the Laguerre ensemble correctly reproduces the universal statistical properties of jammed granular matter and excluding the Gaussian orthogonal ensemble. We also present a random lattice model which is a physically motivated variant of the random matrix ensemble. Numerical calculations reveal that this model reproduces the known features of the vibrational density of states of frictionless granular matter, while also retaining the correlation structure seen in the Laguerre random matrix theory. Graphic abstract
Novel Dairy Fermentates Have Differential Effects on Key Immune Responses Associated with Viral Immunity and Inflammation in Dendritic Cells
Fermented foods and ingredients, including furmenties derived from lactic acid bacteria (LAB) in dairy products, can modulate the immune system. Here, we describe the use of reconstituted skimmed milk powder to generate novel fermentates from Lactobacillus helveticus strains SC232, SC234, SC212, and SC210, and from Lacticaseibacillus casei strains SC209 and SC229, and demonstrate, using in vitro assays, that these fermentates can differentially modulate cytokine secretion via bone-marrow-derived dendritic cells (BMDCs) when activated with either the viral ligand loxoribine or an inflammatory stimulus, lipopolysaccharide. Specifically, we demonstrate that SC232 and SC234 increase cytokines IL-6, TNF-α, IL-12p40, IL-23, IL-27, and IL-10 and decrease IL-1β in primary bone-marrow-derived dendritic cells (BMDCs) stimulated with a viral ligand. In contrast, exposure of these cells to SC212 and SC210 resulted in increased IL-10, IL-1β, IL-23, and decreased IL-12p40 following activation of the cells with the inflammatory stimulus LPS. Interestingly, SC209 and SC229 had little or no effect on cytokine secretion by BMDCs. Overall, our data demonstrate that these novel fermentates have specific effects and can differentially enhance key immune mechanisms that are critical to viral immune responses, or can suppress responses involved in chronic inflammatory conditions, such as ulcerative colitis (UC), and Crohn’s disease (CD).
Scheduling meetings: are the odds in your favor?
Polling all the participants to find a time when everyone is available is the ubiquitous method of scheduling meetings nowadays. We examine the probability of a poll with m participants and ℓ possible meeting times succeeding, where each participant rejects r of the ℓ options. For large ℓ and fixed r / ℓ , we can carry out a saddle-point expansion and obtain analytical results for the probability of success. Despite the thermodynamic limit of large ℓ , the ‘microcanonical’ version of the problem where each participant rejects exactly r possible meeting times, and the ‘canonical’ version where each participant has a probability p = r / ℓ of rejecting any meeting time, only agree with each other if m → ∞ . For m → ∞ , ℓ has to be O ( p - m ) for the poll to succeed, i.e., the number of meeting times that have to be polled increases exponentially with m . Equivalently, as a function of p , there is a discontinuous transition in the probability of success at p ∼ 1 / ℓ 1 / m . If the participants’ availability is approximated as being unchanging from one week to another, i.e., ℓ is limited, a realistic example discussed in the text of the paper shows that the probability of success drops sharply if the number of participants is greater than approximately 4. Graphical abstract
Isolated clival metastasis as the cause of abducens nerve palsy in a patient of breast carcinoma: A rare case report
Metastatic lesions to the clivus have been reported in various cancers including lung cancer, prostate carcinoma, skin melanoma, and hepatocellular carcinoma. There have been only a few reports of breast cancer presenting with isolated clival metastasis. We report a case of 35-year-old lady, who was known case of breast carcinoma presented with diplopia as the only sign of clival metastasis. The etiology was established by magnetic resonance imaging which showed an enhancing lesion in the clivus. The diagnosis of clival metastasis from breast cancer was confirmed by transsphenoidal biopsy.
Fighting biofilms with lantibiotics and other groups of bacteriocins
Biofilms are sessile communities of bacteria typically embedded in an extracellular polymeric matrix. Bacterial cells embedded in biofilms are inherently recalcitrant to antimicrobials, compared to cells existing in a planktonic state, and are notoriously difficult to eradicate once formed. Avenues to tackle biofilms thus far have largely focussed on attempting to disrupt the initial stages of biofilm formation, including adhesion and maturation of the biofilm. Such an approach is advantageous as the concentrations required to inhibit formation of biofilms are generally much lower than removing a fully established biofilm. The crisis of antibiotic resistance in clinical settings worldwide has been further exacerbated by the ability of certain pathogenic bacteria to form biofilms. Perhaps the most notorious biofilm formers described from a clinical viewpoint have been methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Gardnerella vaginalis and Streptococcus mutans, the latter of which is found in oral biofilms. Due to the dearth of novel antibiotics in recent decades, compounded by the increasing rate of emergence of resistance amongst pathogens with a propensity for biofilm formation, solutions are urgently required to mitigate these crises. Bacteriocins are a class of antimicrobial peptides, which are ribosomally synthesised and often are more potent than their antibiotic counterparts. Here, we review a selection of studies conducted with bacteriocins with the ultimate objective of inhibiting biofilms. Overall, a deeper understanding of the precise means by which a biofilm forms on a substrate as well as insights into the mechanisms by which bacteriocins inhibit biofilms is warranted.
Fractal Analysis: revisiting Pollock's drip paintings
We investigate the contentions that Jackson Pollock's drip paintings are fractals produced by the artist's Lévy distributed motion and that fractal analysis may be used to authenticate works of uncertain provenance. We find that the paintings exhibit fractal characteristics over too small a range to be usefully considered as fractal; their limited fractal characteristics are easily generated without Lévy motion, both by freehand drawing and gaussian random motion. Several problems must therefore be addressed before fractal analysis can be used to authenticate paintings.
Solar mean magnetic field of the chromosphere
The Solar Mean Magnetic Field (SMMF) is the mean value of the line-of-sight (LOS) component of the solar vector magnetic field averaged over the visible hemisphere of the Sun. So far, the studies on SMMF have mostly been confined to the magnetic field measurements at the photosphere. In this study, we calculate and analyse the SMMF using magnetic field measurements at the chromosphere, in conjunction with that of photospheric measurements. For this purpose, we have used full-disk LOS magnetograms derived from spectropolarimetric observations carried out in Fe  i 6301.5 Å and Ca  ii 8542 Å by the Synoptic Optical Long-term Investigations of the Sun (SOLIS)/Vector Spectromagnetograph (VSM) instrument during 2010–2017. It is found from this study that the SMMF at the chromosphere is weaker by a factor of 0.60 compared to the SMMF at the upper-photosphere. The correlation analysis between them gives a Pearson correlation coefficient of 0.80. The similarity and reduced intensity of the chromospheric SMMF with respect to the photospheric SMMF corroborate the idea that it is the source of the Interplanetary Magnetic Field (IMF).