Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Matsuki, Kota"
Sort by:
Association between Higher Serum Cortisol Levels and Decreased Insulin Secretion in a General Population
2016
Glucocorticoids (GCs) are well known to induce insulin resistance. However, the effect of GCs on insulin secretion has not been well characterized under physiological conditions in human. We here evaluated the effect of GCs on insulin secretion/ß-cell function precisely in a physiological condition. A population-based study of 1,071 Japanese individuals enrolled in the 2014 Iwaki study (390 men, 681 women; aged 54.1 ± 15.1 years), those excluded individuals taking medication for diabetes or steroid treatment, were enrolled in the present study. Association between serum cortisol levels and insulin resistance/secretion assessed by homeostasis model assessment using fasting blood glucose and insulin levels (HOMA-R and HOMA-ß, respectively) were examined. Univariate linear regression analyses showed correlation of serum cortisol levels with HOMA-ß (ß = -0.134, p <0.001) but not with HOMA-R (ß = 0.042, p = 0.172). Adjustments for age, gender, and the multiple clinical characteristics correlated with HOMA indices showed similar results (HOMA-ß: ß = -0.062, p = 0.025; HOMA-R: ß = -0.023, p = 0.394). The correlation between serum cortisol levels and HOMA-ß remained significant after adjustment for HOMA- R (ß = -0.057, p = 0.034). When subjects were tertiled based on serum cortisol levels, the highest tertile was at greater risk of decreased insulin secretion (defined as lower one third of HOMA-ß (≤70)) than the lowest tertile, after adjustment for multiple factors including HOMA- R (odds ratio 1.26, 95% confidence interval 1.03-1.54). In conclusion, higher serum cortisol levels are significantly associated with decreased insulin secretion in the physiological cortisol range in a Japanese population.
Journal Article
Association between serum prolactin levels and insulin resistance in non-diabetic men
2017
Prolactin (PRL) has roles in various physiological functions. Although experimental studies showed that PRL has both beneficial and adverse effects on type 2 diabetes mellitus, clinical findings in subjects with hyperprolactinemia indicate adverse effects on glucose metabolism. However, effects of PRL within the physiological range in human are controversial. A population-based study of 370 Japanese men enrolled in the 2014 Iwaki study (aged 52.0 ± 14.8 years). In this cross-sectional study, associations between serum PRL levels and homeostatic model assessment (HOMA) indices representing glucose metabolism in a physiological setting were examined using multivariable regression analysis. Although univariate linear regression analyses showed significant associations between serum PRL levels and HOMA indices, adjustment with multiple factors made the association with HOMA-ß (insulin secretion) insignificant, while those with HOMA-R (insulin resistance) remained significant (ß = 0.084, p = 0.035). Non-linear regression analyses showed a regression curve with a peak at serum PRL level, 12.4 ng/mL and a positive association of serum PRL level with HOMA-R below the peak (ß = 0.119, p = 0.004). Higher serum PRL levels within the physiological range seem to be associated with insulin resistance in men.
Journal Article
Association between equol producers and type 2 diabetes mellitus among Japanese older adults
2023
Aims/Introduction Equol, which is produced by enteric bacteria from soybean isoflavones, has a chemical structure similar to estrogen. Both in vivo and in vitro studies have shown the beneficial metabolic effects of equol. However, its effects on type 2 diabetes remain unclear. We investigated the association between the equol producers/non‐producers and type 2 diabetes. Materials and Methods The participants included 147 patients with type diabetes mellitus aged 70–89 years, and 147 age‐ and sex‐matched controls. To ascertain the equol producers or non‐producers, we used the comparative logarithm between the urinary equol and daidzein concentrations (cut‐off value −1.75). Results The urinary equol concentration was significantly lower in the diabetes group compared with the non‐diabetes group (P = 0.01). A significant difference in the proportion of equol producers was observed among all participants (38.8% in the diabetes group and 53.1% in the non‐diabetes group; P = 0.01). The proportion of equol producers among women was significantly lower in the diabetes group (31.4%) than in the non‐diabetes group (52.8%; P < 0.01). Additionally, the frequency of dyslipidemia in female equol producers was significantly lower than that in female non‐equol producers (P < 0.01). Among men, no such differences were observed. We found a significant positive correlation between the urinary equol and daidzein concentrations among equol producers (r = 0.55, P < 0.01). Conclusions Our study findings showed that postmenopausal women had a low proportion of equol producers with diabetes and dyslipidemia. The proportion of equol producers among women was significantly lower in the diabetes group compared with the non‐diabetes group.
Journal Article
Polygonum tinctorium leaf extract ameliorates high-fat diet-induced intestinal epithelial damage in mice
by
Kikuchi, Hidezumi
,
Kawaguchi, Shogo
,
Matsuki, Kota
in
Antibodies
,
Care and treatment
,
Chemical properties
2023
Dietary fat strongly influences the intestinal mucosal barrier, which protects against invading pathogenic bacteria. A high-fat diet (HFD) compromises the integrity of epithelial tight junctions (TJs) and reduces mucin production, leading to intestinal barrier disruption and metabolic endotoxemia. It has been shown that the active constituents of indigo plants can protect against intestinal inflammation; however, their protective role in HFD-induced intestinal epithelial damage remains unknown. The present study aimed to investigate the effects of Polygonum tinctorium leaf extract (indigo Ex) on HFD-induced intestinal damage in mice. Male C57BL6/J mice were fed a HFD and injected intraperitoneally with either indigo Ex or phosphate-buffered saline (PBS) for 4 weeks. The expression levels of TJ proteins, zonula occludens-1 and Claudin-1, were analyzed by immunofluorescence staining and western blotting. The colon mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-12p40, IL-10 and IL-22 were measured by reverse transcription-quantitative PCR. The results revealed that indigo Ex administration attenuated the HFD-induced shortening of the colon. Colon crypt length was shown to be significantly greater in the indigo Ex-treated group mice compared with that in the PBS-treated group mice. Moreover, indigo Ex administration increased the number of goblet cells, and ameliorated the redistribution of TJ proteins. Notably, indigo Ex significantly increased the colon mRNA expression levels of IL-10. Indigo Ex displayed little effect on the gut microbial composition of HFD-fed mice. Taken together, these results suggested that indigo Ex may protect against HFD-induced epithelial damage. The leaves of indigo plants contain promising natural therapeutic compounds that could be used to treat obesity-associated intestinal damage and metabolic inflammation.
Journal Article
Identification of Aortic Arch-Specific Quantitative Trait Loci for Atherosclerosis by an Intercross of DBA/2J and 129S6 Apolipoprotein E-Deficient Mice
2015
The genetic background of apolipoprotein E (apoE) deficient mice influences atherosclerotic plaque development. We previously reported three quantitative trait loci (QTL), Aath1-Aath3, that affect aortic arch atherosclerosis independently of those in the aortic root in a cross between C57BL6 apoEKO mice (B6-apoE) and 129S6 apoEKO mice (129-apoE). To gain further insight into genetic factors that influence atherosclerosis at different vascular locations, we analyzed 335 F2 mice from an intercross between 129-apoE and apoEKO mice on a DBA/2J genetic background (DBA-apoE). The extent of atherosclerosis in the aortic arch was very similar in the two parental strains. Nevertheless, a genome-wide scan identified two significant QTL for plaque size in the aortic arch: Aath4 on Chromosome (Chr) 2 at 137 Mb and Aath5 on Chr 10 at 51 Mb. The DBA alleles of Aath4 and Aath5 respectively confer susceptibility and resistance to aortic arch atherosclerosis over 129 alleles. Both QTL are also independent of those affecting plaque size at the aortic root. Genome analysis suggests that athero-susceptibility of Aath4 in DBA may be contributed by multiple genes, including Mertk and Cd93, that play roles in phagocytosis of apoptotic cells and modulate inflammation. A candidate gene for Aath5 is Stab2, the DBA allele of which is associated with 10 times higher plasma hyaluronan than the 129 allele. Overall, our identification of two new QTL that affect atherosclerosis in an aortic arch-specific manner further supports the involvement of distinct pathological processes at different vascular locations.
Journal Article
Primary aldosteronism and impaired natriuresis in mice underexpressing TGFβ1
by
Kim, Hyung-Suk
,
Matsuki, Kota
,
Bertorello, Alejandro M.
in
aldosterone
,
Aldosterone - blood
,
Amiloride - pharmacology
2013
To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor β1 (TGFβ1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na ⁺, K ⁺-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function.
Journal Article
Dominance of the hypothalamus-pituitary-adrenal axis over the renin-angiotensin-aldosterone system is a risk factor for decreased insulin secretion
2017
How the association between the hypothalamus-pituitary-adrenal (HPA) axis and the renin-angiotensin-aldosterone system (RAAS) affects glucose metabolism were not well examined in a general population. Participants of the population-based 2015 Iwaki study were enrolled (n: 1,016; age: 54.4 ± 15.1 years). Principal component (PC) analysis identified two PCs: PC1 represented levels of the HPA axis (serum cortisol) and the RAAS (plasma aldosterone) as a whole, and PC2 represented the HPA axis relative to the RAAS (HPA axis dominance). We examined the association between these PCs and glucose metabolism using homeostasis model assessment indices of reduced insulin sensitivity (HOMA-R) and secretion (HOMA-β). Univariate linear regression analyses showed a correlation between PC2 and HOMA-β (β = −0.248, p < 0.0001), but not between PC1 and HOMA-β (β = −0.004, p = 0.9048). The correration between PC2 and HOMA-β persisted after adjustment for multiple factors (β = −0.101, p = 0.0003). No correlations were found between the PCs and HOMA-R. When subjects were tertiled based on PC2, the highest tertile was at greater risk of decreased insulin secretion (defined as the lower one third of HOMA-β (≤68.9)) than the lowest tertile after adjustment for multiple factors (odds ratio, 2.00; 95% confidence interval, 1.35–2.97). The HPA axis dominance is associated with decreased insulin secretion in a Japanese population.
Journal Article
Primary aldosteronism and impaired natriuresis in mice underexpressing TGFBeta1
by
Bertorello, Alejandro M
,
Kim, Hyung-Suk
,
Matsuki, Kota
in
Blood pressure
,
Electrolytes
,
Enzymes
2013
To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor β1 (TGFβ1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na+, K+-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function. [PUBLICATION ABSTRACT]
Journal Article
Identification of Aortic Arch-Specific Quantitative Trait Loci for Atherosclerosis by an Intercross of DBA/2J and 129S6 Apolipoprotein E-Deficient Mice: e0117478
2015
The genetic background of apolipoprotein E (apoE) deficient mice influences atherosclerotic plaque development. We previously reported three quantitative trait loci (QTL), Aath1-Aath3, that affect aortic arch atherosclerosis independently of those in the aortic root in a cross between C57BL6 apoEKO mice (B6-apoE) and 129S6 apoEKO mice (129-apoE). To gain further insight into genetic factors that influence atherosclerosis at different vascular locations, we analyzed 335 F2 mice from an intercross between 129-apoE and apoEKO mice on a DBA/2J genetic background (DBA-apoE). The extent of atherosclerosis in the aortic arch was very similar in the two parental strains. Nevertheless, a genome-wide scan identified two significant QTL for plaque size in the aortic arch: Aath4 on Chromosome (Chr) 2 at 137 Mb and Aath5 on Chr 10 at 51 Mb. The DBA alleles of Aath4 and Aath5 respectively confer susceptibility and resistance to aortic arch atherosclerosis over 129 alleles. Both QTL are also independent of those affecting plaque size at the aortic root. Genome analysis suggests that athero-susceptibility of Aath4 in DBA may be contributed by multiple genes, including Mertk and Cd93, that play roles in phagocytosis of apoptotic cells and modulate inflammation. A candidate gene for Aath5 is Stab2, the DBA allele of which is associated with 10 times higher plasma hyaluronan than the 129 allele. Overall, our identification of two new QTL that affect atherosclerosis in an aortic arch-specific manner further supports the involvement of distinct pathological processes at different vascular locations.
Journal Article