Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
147
result(s) for
"Matt, Stephanie M"
Sort by:
Maternal viral infection causes global alterations in porcine fetal microglia
2019
Maternal infections during pregnancy are associated with increased risk of neurodevelopmental disorders, although the precise mechanisms remain to be elucidated. Previously, we established a maternal immune activation (MIA) model using swine, which results in altered social behaviors of piglet offspring. These behavioral abnormalities occurred in the absence of microglia priming. Thus, we examined fetal microglial activity during prenatal development in response to maternal infection with live porcine reproductive and respiratory syndrome virus. Fetuses were obtained by cesarean sections performed 7 and 21 d postinoculation (dpi). MIA fetuses had reduced brain weights at 21 dpi compared to controls. Furthermore, MIA microglia increased expression of major histocompatibility complex class II that was coupled with reduced phagocytic and chemotactic activity compared to controls. High-throughput gene-expression analysis of microglial-enriched genes involved in neurodevelopment, the microglia sensome, and inflammation revealed differential regulation in primary microglia and in whole amygdala tissue. Microglia density was increased in the fetal amygdala at 7 dpi. Our data also reveal widespread sexual dimorphisms in microglial gene expression and demonstrate that the consequences of MIA are sex dependent. Overall, these results indicate that fetal microglia are significantly altered by maternal viral infection, presenting a potential mechanism through which MIA impacts prenatal brain development and function.
Journal Article
Dopamine-driven increase in IL-1β in myeloid cells is mediated by differential dopamine receptor expression and exacerbated by HIV
by
Agarwal, Yash
,
Matt, Stephanie M.
,
Mompho, Krisna
in
Biomedical and Life Sciences
,
Biomedicine
,
Cells, Cultured
2025
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Graphical Abstract
Highlights
Relative expression of specific dopamine receptors impacts dopamine-induced IL-1β.
Dopamine increases IL-1β in myeloid cells with a high D1/D2 receptor ratio.
RNA-sequencing of dopamine-treated microglia indicates changes in neuroinflammation.
Dopamine exacerbates IL-1β/inflammasome components in HIV-infected myeloid cells.
Journal Article
Methamphetamine Increases the Proportion of SIV-Infected Microglia/Macrophages, Alters Metabolic Pathways, and Elevates Cell Death Pathways: A Single-Cell Analysis
by
Morsey, Brenda
,
Emanuel, Katy
,
Matt, Stephanie M.
in
adverse effects
,
Animals
,
biochemical pathways
2020
Both substance use disorder and HIV infection continue to affect many individuals. Both have untoward effects on the brain, and the two conditions often co-exist. In the brain, macrophages and microglia are infectable by HIV, and these cells are also targets for the effects of drugs of abuse, such as the psychostimulant methamphetamine. To determine the interaction of HIV and methamphetamine, we isolated microglia and brain macrophages from SIV-infected rhesus monkeys that were treated with or without methamphetamine. Cells were subjected to single-cell RNA sequencing and results were analyzed by statistical and bioinformatic analysis. In the animals treated with methamphetamine, a significantly increased proportion of the microglia and/or macrophages were infected by SIV. In addition, gene encoding functions in cell death pathways were increased, and the brain-derived neurotropic factor pathway was inhibited. The gene expression patterns in infected cells did not cluster separately from uninfected cells, but clusters comprised of microglia and/or macrophages from methamphetamine-treated animals differed in neuroinflammatory and metabolic pathways from those comprised of cells from untreated animals. Methamphetamine increases CNS infection by SIV and has adverse effects on both infected and uninfected microglia and brain macrophages, highlighting the dual and interacting harms of HIV infection and drug abuse on the brain.
Journal Article
Inhibition of DNA Methylation With Zebularine Alters Lipopolysaccharide-Induced Sickness Behavior and Neuroinflammation in Mice
by
Lawson, Marcus A.
,
Bustamante, Angela C.
,
Johnson, Rodney W.
in
Behavior
,
Bisulfite
,
Burrowing behavior
2018
Activity of DNA methyltransferases (DNMTs), the enzymes that catalyze DNA methylation, is dynamically regulated in the brain. DNMT inhibitors alter DNA methylation globally in the brain and at individual neural plasticity-associated genes, but how DNMT inhibitors centrally influence lipopolysaccharide (LPS)-induced neuroinflammation is not known. We investigated whether the DMNT inhibitor, zebularine, would alter sickness behavior, DNA methylation of the
promoter and expression of inflammatory genes in hippocampus and microglia. Contrary to our hypothesis that zebularine may exaggerate LPS-induced sickness response and neuroinflammation, adult mice treated with an intracerebroventricular (ICV) injection of zebularine prior to LPS had surprisingly faster recovery of burrowing behavior compared to mice treated with LPS. Further, genes of inflammatory markers, epigenetic regulators, and the microglial sensory apparatus (i.e., the sensome) were differentially expressed by zebularine alone or in combination with LPS. Bisulfite pyrosequencing revealed that ICV zebularine led to decreased DNA methylation of two CpG sites near the
proximal promoter alone or in combination with LPS. Zebularine treated mice still exhibited decreased DNA methylation 48 h after treatment when LPS-induced sickness behavior as well as hippocampal and microglial gene expression were similar to control mice. Taken together, these data suggest that decreased DNA methylation, specifically of the
promoter region, with a DNMT inhibitor in the brain disrupts molecular mechanisms of neuroinflammation.
Journal Article
Functional characterization of the biogenic amine transporters on human macrophages
2022
Monocyte-derived macrophages (MDMs) are key players in tissue homeostasis and diseases regulated by a variety of signaling molecules. Recent literature has highlighted the ability for biogenic amines to regulate macrophage functions, but the mechanisms governing biogenic amine signaling in and around immune cells remain nebulous. In the CNS, biogenic amine transporters are regarded as the master regulators of neurotransmitter signaling. While we and others have shown that macrophages express these transporters, relatively little is known of their function in these cells. To address these knowledge gaps, we investigated the function of norepinephrine transporter (NET) and dopamine transporter (DAT) on human MDMs. We found that both NET and DAT are present and can uptake substrate from the extracellular space at baseline. Not only was DAT expressed in cultured MDMs, but it was also detected in a subset of intestinal macrophages in situ. Surprisingly, we discovered a NET-independent, DAT-mediated immunomodulatory mechanism in response to LPS. LPS induced reverse transport of dopamine through DAT, engaging an autocrine/paracrine signaling loop that regulated the macrophage response. Removing this signaling loop enhanced the proinflammatory response to LPS. Our data introduce a potential role for DAT in the regulation of innate immunity.
Journal Article
Severity of neonatal influenza infection is driven by type I interferon and oxidative stress
by
Galani, Ioanna-Evdokia
,
Rao, Abhishek
,
Pascasio, Judy
in
Allergology
,
Animals
,
Animals, Newborn
2022
Neonates exhibit increased susceptibility to respiratory viral infections, attributed to inflammation at the developing pulmonary air-blood interface. IFN I are antiviral cytokines critical to control viral replication, but also promote inflammation. Previously, we established a neonatal murine influenza virus (IV) model, which demonstrates increased mortality. Here, we sought to determine the role of IFN I in this increased mortality. We found that three-day-old IFNAR-deficient mice are highly protected from IV-induced mortality. In addition, exposure to IFNβ 24 h post IV infection accelerated death in WT neonatal animals but did not impact adult mortality. In contrast, IFN IIIs are protective to neonatal mice. IFNβ induced an oxidative stress imbalance specifically in primary neonatal IV-infected pulmonary type II epithelial cells (TIIEC), not in adult TIIECs. Moreover, neonates did not have an infection-induced increase in antioxidants, including a key antioxidant, superoxide dismutase 3, as compared to adults. Importantly, antioxidant treatment rescued IV-infected neonatal mice, but had no impact on adult morbidity. We propose that IFN I exacerbate an oxidative stress imbalance in the neonate because of IFN I-induced pulmonary TIIEC ROS production coupled with developmentally regulated, defective antioxidant production in response to IV infection. This age-specific imbalance contributes to mortality after respiratory infections in this vulnerable population.
Journal Article
Aging alters antiviral signaling pathways resulting in functional impairment in innate immunity in response to pattern recognition receptor agonists
2022
The progressive impairment of immunity to pathogens and vaccines with aging is a significant public health problem as the world population shifts to an increased percentage of older adults (> 65). We have previously demonstrated that cells obtained from older volunteers have delayed and defective induction of type I interferons and T cell and B cell helper cytokines in response to TLR ligands when compared to those from adult subjects. However, the underlying intracellular mechanisms are not well described. Herein, we studied two critical pathways important in the production of type I interferon (IFN), the interferon response factor 7 (pIRF7), and TANK-binding kinase (pTBK-1). We show a decrease in pIRF7 and pTBK-1 in cross-priming dendritic cells (cDC1s), CD4
+
T cell priming DCs (cDC2s), and CD14
dim
CD16
+
vascular patrolling monocytes from older adults (
n
= 11) following stimulation with pathway-specific agonists in comparison with young individuals (
n
= 11). The decrease in these key antiviral pathway proteins correlates with decreased phagocytosis, suggesting impaired function in Overall, our findings describe molecular mechanisms which explain the innate functional impairment in older adults and thus could inform us of novel approaches to restore these defects.
Graphical abstract
Journal Article
High-throughput High Content Quantification of HIV-1 Viral Infectious Output
2025
Infection with human immunodeficiency virus (HIV-1) remains a global health issue and still drives the development of significant pathology and various comorbidities. Antiretroviral therapy (ART) can effectively suppress viral replication but is often initiated months or years after initial infection, leaving a substantial period in which viral replication progresses unchecked. While ART suppresses HIV-1 replication, it does not prohibit the development of HIV-1-associated comorbidities, highlighting a lack of understanding in the connection between replication and HIV-1-associated pathogeneses. Thus, it is critical to better define HIV-1 replication dynamics to more effectively target different stages of the viral replication cycle in distinct cell populations. Here, we show a high-content imaging reporter assay that uses modified human osteosarcoma cells expressing HIV-1 receptors (GHOST cells) which fluoresce in response to HIV-1 infection. These cells have been previously used to assess HIV-1 infectivity and tropism, but this modified assay enables rapid evaluation of large numbers of samples with consistency and replicability, while also easily integrating into existing experimental pipelines that analyze p24 secretion in collected supernatants. This also allows for direct correlation between infectivity and p24 secretion, resulting in a deeper interrogation and more robust understanding of HIV-1 infection kinetics.
Journal Article
Dopamine-driven increase in IL-1beta in myeloid cells is mediated by differential dopamine receptor expression and exacerbated by HIV
by
Agarwal, Yash
,
Mompho, Krisna
,
LuPone, Teresa
in
Bone marrow cells
,
Complications and side effects
,
Development and progression
2025
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1[beta] in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1[beta] in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1[beta], and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1[beta]. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1[beta] gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1[beta] signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1[beta] in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1[beta], will be critical to effectively tailor medication regimens. Graphical
Journal Article
Dopamine-driven Increase in IL-1β in Myeloid Cells is Mediated by Differential Dopamine Receptor Expression and Exacerbated by HIV
2024
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Journal Article