Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,735 result(s) for "Matteo, Cristina"
Sort by:
Stroma gene signature predicts responsiveness to chemotherapy in pancreatic ductal adenocarcinoma patient‐derived xenograft models
Despite many efforts to understand the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) treatment resistance, there is still no reliable method for selecting patients who could benefit from standard pharmacological treatment. Here, four PDAC patient‐derived xenografts (PDAC‐PDXs) with different responses to gemcitabine plus nab‐paclitaxel (nanoparticle albumin‐bound paclitaxel) were studied to dissect the contribution of both tumor and host microenvironment to treatment response. PDAC‐PDXs transplanted into the pancreas of immunodeficient mice retained the main genetic and histopathological characteristics of the original human tumors, including invasiveness and desmoplastic reaction. Response to chemotherapy was associated with a specific 294 stroma gene signature and was not due to the intrinsic responsiveness of tumor cells or differences in drug delivery. Human dataset analysis validated the expression of the 294 stroma gene signature in PDAC clinical samples, confirming PDAC‐PDXs as a useful tool to study the biology of tumor–host interactions and to test drug efficacy. In summary, we identified a stroma gene signature that differentiates PDAC‐PDXs that are responsive to gemcitabine plus Nab‐paclitaxel treatment from those that are not, confirming the active role of the tumor microenvironment in the drug response. Pancreatic ductal adenocarcinoma patient‐derived xenografts (PDAC‐PDXs) engrafted orthotopically in the pancreas of immunodeficient mice retain the main genetic and histopathological characteristics of the original human tumors. A 294 stroma gene signature differentiates between PDAC‐PDXs that are responsive to gemcitabine plus nab‐paclitaxel versus those that are nonresponsive, suggesting an active role of the tumor microenvironment in drug response.
A nanoencapsulated oral formulation of fenretinide promotes local and metastatic breast cancer dormancy in HER2/neu transgenic mice
Background Prevention and treatment of metastatic breast cancer (BC) is an unmet clinical need. The retinoic acid derivative fenretinide (FeR) was previously evaluated in Phase I-III clinical trials but, despite its excellent tolerability and antitumor activity in preclinical models, showed limited therapeutic efficacy due to poor bioavailability. We recently generated a new micellar formulation of FeR, Bionanofenretinide (Bio-nFeR) showing enhanced bioavailability, low toxicity, and strong antitumor efficacy on human lung cancer, colorectal cancer, and melanoma xenografts. In the present study, we tested the effect of Bio-nFeR on a preclinical model of metastatic BC. Methods We used BC cell lines for in vitro analyses of cell viability, cell cycle and migratory capacity. For in vivo studies, we used HER2/neu transgenic mice (neuT) as a model of spontaneously metastatic BC. Mice were treated orally with Bio-nFeR and at sacrifice primary and metastatic breast tumors were analyzed by histology and immunohistochemistry. Molecular pathways activated in primary tumors were analyzed by immunoblotting. Stem cell content was assessed by flow cytometry, immunoblotting and functional assays such as colony formation ex vivo and second transplantation assay in immunocompromised mice. Results Bio-nFeR inhibited the proliferation and migration of neuT BC cells in vitro and showed significant efficacy against BC onset in neuT mice. Importantly, Bio-nFeR showed the highest effectiveness against metastatic progression, counteracting both metastasis initiation and expansion. The main mechanism of Bio-nFeR action consists of promoting tumor dormancy through a combined induction of antiproliferative signals and inhibition of the mTOR pathway. Conclusion The high effectiveness of Bio-nFeR in the neuT model of mammary carcinogenesis, coupled with its low toxicity, indicates this formulation as a potential candidate for the treatment of metastatic BC and for the adjuvant therapy of BC patients at high risk of developing metastasis.
Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging
: Optimal intratumor distribution of an anticancer drug is fundamental to reach an active concentration in neoplastic cells, ensuring the therapeutic effect. Determination of drug concentration in tumor homogenates by LC-MS/MS gives important information about this issue but the spatial information gets lost. Targeted mass spectrometry imaging (MSI) has great potential to visualize drug distribution in the different areas of tumor sections, with good spatial resolution and superior specificity. MSI is rapidly evolving as a quantitative technique to measure the absolute drug concentration in each single pixel. : Different inorganic nanoparticles were tested as matrices to visualize the PARP inhibitors (PARPi) niraparib and olaparib. Normalization by deuterated internal standard and a custom preprocessing pipeline were applied to achieve a reliable single pixel quantification of the two drugs in human ovarian tumors from treated mice. : A quantitative method to visualize niraparib and olaparib in tumor tissue of treated mice was set up and validated regarding precision, accuracy, linearity, repeatability and limit of detection. The different tumor penetration of the two drugs was visualized by MSI and confirmed by LC-MS/MS, indicating the homogeneous distribution and higher tumor exposure reached by niraparib compared to olaparib. On the other hand, niraparib distribution was heterogeneous in an ovarian tumor model overexpressing the multidrug resistance protein P-gp, a possible cause of resistance to PARPi. : The current work highlights for the first time quantitative distribution of PAPRi in tumor tissue. The different tumor distribution of niraparib and olaparib could have important clinical implications. These data confirm the validity of MSI for spatial quantitative measurement of drug distribution providing fundamental information for pharmacokinetic studies, drug discovery and the study of resistance mechanisms.
A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells
Background An increasing number of anticancer agents has been proposed in recent years with the attempt to overcome treatment-resistant cancer cells and particularly cancer stem cells (CSC), the major culprits for tumour resistance and recurrence. However, a huge obstacle to treatment success is the ineffective delivery of drugs within the tumour environment due to limited solubility, short circulation time or inconsistent stability of compounds that, together with concomitant dose-limiting systemic toxicity, contribute to hamper the achievement of therapeutic drug concentrations. The synthetic retinoid Fenretinide (4-hydroxy (phenyl)retinamide; 4-HPR) formerly emerged as a promising anticancer agent based on pre-clinical and clinical studies. However, a major limitation of fenretinide is traditionally represented by its poor aqueous solubility/bioavailability due to its hydrophobic nature, that undermined the clinical success of previous clinical trials. Methods Here, we developed a novel nano-micellar fenretinide formulation called bionanofenretinide (Bio-nFeR), based on drug encapsulation in an ion-pair stabilized lipid matrix, with the aim to raise fenretinide bioavailability and antitumour efficacy. Results Bio-nFeR displayed marked antitumour activity against lung, colon and melanoma CSC both in vitro and in tumour xenografts, in absence of mice toxicity. Bio-nFeR is suitable for oral administration, reaching therapeutic concentrations within tumours and an unprecedented therapeutic activity in vivo as single agent. Conclusion Altogether, our results indicate Bio-nFeR as a novel anticancer agent with low toxicity and high activity against tumourigenic cells, potentially useful for the treatment of solid tumours of multiple origin.
Validated LC-MS/MS Assay for the Quantitative Determination of Fenretinide in Plasma and Tumor and Its Application in a Pharmacokinetic Study in Mice of a Novel Oral Nanoformulation of Fenretinide
We describe the development and validation of a HPLC-MS/MS method to assess the pharmacokinetics and tumor distribution of fenretinide, a synthetic retinoid chemically related to all-trans-retinoic acid, after administration of a novel oral nanoformulation of fenretinide, called bionanofenretinide (BNF). BNF was developed to overcome the major limitation of fenretinide: its poor aqueous solubility and bioavailability due to its hydrophobic nature. The method proved to be reproducible, precise and highly accurate for the measurement of the drug and the main metabolites. The lower limit of quantification resulted in 1 ng/mL. The curve range of 1–500 ng/mL and 50–2000 ng/mL, for plasma and tumor homogenate, respectively, was appropriate for the analysis, as demonstrated by the accuracy of between 96.8% and 102.4% for plasma and 96.6 to 102.3% for the tumor. The interdays precision and accuracy determined on quality controls at three different levels were in the ranges of 6.9 to 7.5% and 99.3 to 101.0%, and 0.96 to 1.91% and 102.3 to 105.8% for plasma and tumor, respectively. With the application of the novel assay in explorative pharmacokinetic studies, following acute and chronic oral administration of the nanoformulation, fenretinide was detected in plasma and tumor tissue at a concentration higher than the IC50 value necessary for in vitro inhibitory activity (i.e., 1–5 µM) in different cancer cells lines. We were also able to detect the presence in plasma and tumor of active and inactive metabolites of fenretinide.
Pharmacokinetics of Pegaspargase with a Limited Sampling Strategy for Asparaginase Activity Monitoring in Children with Acute Lymphoblastic Leukemia
Background: Asparaginase (ASPase) plays an important role in the therapy of acute lymphoblastic leukemia (ALL). Serum ASPase activity (SAA) can be modified and even abolished by host immune responses; therefore, current treatment guidelines recommend to monitor SAA during treatment administration. The SAA monitoring schedule needs to be carefully planned to reduce the number of samples without hampering the possibility of measuring pharmacokinetics (PK) parameters in individual patients. Complex modelling approaches, not easily applicable in common practice, have been applied in previous studies to estimate ASPase PK parameters. This study aimed to estimate PK parameters by using a simplified approach suitable for real-world settings with limited sampling. Methods: Our study was based on 434 patients treated in Italy within the AIEOP-BFM ALL 2009 trial. During the induction phase, patients received two doses of pegylated ASPase and were monitored with blood sampling at five time points, including time 0. PK parameters were estimated by using the individually available SAA measurements with simple modifications of the classical non-compartmental PK analysis. We also took the opportunity to develop and validate a series of limited sampling models to predict ASPase exposure. Results: During the induction phase, average ASPase activity at day 7 was 1380 IU/L after the first dose and 1948 IU/L after the second dose; therapeutic SAA levels (>100 IU/L) were maintained until day 33 in 90.1% of patients. The average AUC and clearance were 46,937 IU/L × day and 0.114 L/day/m2, respectively. The database was analyzed for possible associations of PK parameters with biological characteristics of the patients, finding only a limited dependence on sex, age and risk score; however, these differences were not sufficient to allow any dose or schedule adjustments. Thereafter the possibility of further sampling reduction by using simple linear models to estimate the AUC was also explored. The most simple model required only two samplings 7 days after each ASPase dose, with the AUC being proportional to the sum of the two measured activities A(7) and A(21), calculated by the formula AUC = 14.1 × [A(7) + A(21)]. This model predicts the AUC with 6% average error and 35% maximum error compared to the AUC estimated with all available measures. Conclusions: Our study demonstrates the feasibility of a direct estimation of PK parameters in a real-life situation with limited and variable blood sampling schedules and also offers a simplified method and formulae easily applicable in clinical practice while maintaining a reliable pharmacokinetic monitoring.
A phase Ib/II study of regorafenib and paclitaxel in patients with beyond first-line advanced esophagogastric carcinoma (REPEAT)
Purpose: Regorafenib monotherapy, a multikinase inhibitor of angiogenesis, tumor microenvironment, and tumorigenesis, showed promising results in gastric cancer. We aimed to assess the tolerability of regorafenib and paclitaxel in patients with advanced esophagogastric cancer (EGC) refractory to first-line treatment, and explore potential biomarkers. Methods: Patients received paclitaxel (80 mg/m2) on days 1, 8, and 15 of a 28-day cycle and regorafenib (80/120/160 mg) on days 1–21 in the dose-escalation cohort, and the maximum-tolerated dose (MTD) in the dose-expansion cohort. Exploratory, overall survival (OS) and progression-free survival (PFS) were compared to a propensity-score matched cohort receiving standard second-/third-line systemic treatment. Paclitaxel pharmacokinetics were assessed using samples from day 1 (D1) and day 15 (D15). We performed enzyme-linked immunosorbent assay measurements of galectin-1, RNA sequencing, and shallow whole-genome sequencing of metastatic tumor biopsies for biomarker analyses. Results: In the dose-escalation cohort (n = 14), the MTD of regorafenib was 120 mg. In all, 34 patients were enrolled in the dose-expansion cohort. Most common toxicities (all grades; grade ⩾ 3) were fatigue (79%; 4%) and sensory neuropathy (63%; 4%). Best responses achieved were partial response (28%) and stable disease (54%). Median OS and PFS were 7.8 and 4.2 months, respectively (median follow-up: 7.8 months). OS (p = 0.08) and PFS (p = 0.81) were not significantly improved compared to the matched cohort. Paclitaxel concentrations were significantly increased with regorafenib (D15) compared with paclitaxel only (D1; p < 0.05); no associations were observed with toxicity or efficacy. An increase in circulating galectin-1 compared to baseline was associated with shorter OS (p < 0.01). Enrichment of angiogenesis-related gene expression was observed in short survivors measured by RNA sequencing. Chromosome 19q13.12-q13.2 amplification was associated with shorter OS (p = 0.02) and PFS (p = 0.02). Conclusion: Treatment with regorafenib and paclitaxel is tolerable and shows promising efficacy in advanced EGC refractory to first-line treatment. Galectin-1 and chromosome 19q13.12-q13.2 amplification could serve as negative predictive biomarkers for treatment response. Registration: Clinicaltrials.gov, NCT02406170, https://clinicaltrials.gov/ct2/show/NCT02406170
Preclinical Activity of Two Paclitaxel Nanoparticle Formulations After Intraperitoneal Administration in Ovarian Cancer Murine Xenografts
Epithelial ovarian cancer is associated with high mortality due to diagnosis at later stages associated with peritoneal involvement. Several trials have evaluated the effect of intraperitoneal treatment. In this preclinical study, we report the efficacy, pharmacokinetics and pharmacodynamics of intraperitoneal treatment with two approved nanomolecular formulations of paclitaxel (nab-PTX and mic-PTX) in a murine ovarian cancer xenograft model. IC50 was determined in vitro on three ovarian cancer cell lines (OVCAR-3, SK-OV-3 and SK-OV-3-Luc IP1). EOC xenografts were achieved using a modified subperitoneal implantation technique. Drug treatment was initiated 2 weeks after engraftment, and tumor volume and survival were assessed. Pharmacokinetics and drug distribution effects were assessed using UHPLC-MS/MS and MALDI imaging mass spectrometry, respectively. Pharmacodynamic effects were analyzed using immunohistochemistry and transmission electron microscopy using standard protocols. We demonstrated sub-micromolar IC concentrations for both formulations on three EOC cancer cell lines in vitro. Furthermore, IP administration of nab-PTX or mic-PTX lead to more than 2-fold longer survival compared to a control treatment of IP saline administration (30 days in controls, 66 days in nab-PTX treated animals, and 76 days in mic-PTX animals, respectively). We observed higher tissue uptake of drug following nab-PTX administration when compared to mic-PTX, with highest uptake after 4 hours post-treatment, and confirmed this lower uptake of mic-PTX using HPLC on digested tumor samples. Furthermore, apoptosis was not increased in tumor implants up to 24h post-treatment. Intraperitoneal administration of both nab-PTX and mic-PTX results in a significant anticancer efficacy and survival benefit in a mouse OC xenograft model.
Venetoclax penetrates in cerebrospinal fluid of an acute myeloid leukemia patient with leptomeningeal involvement
Relapse at the central nervous system (CNS) in acute myeloid leukemia (AML) carries a dismal prognosis. Treatment options are limited to intrathecal therapy, high-dose cytarabine, high-dose methotrexate, and radiotherapy. Novel strategies are needed. Venetoclax has recently been approved by the FDA, in combination with hypomethylating agents or low-dose cytarabine, for elderly adults or patients ineligible for intensive chemotherapy affected by AML. However, little is known on its efficacy in patients with leptomeningeal involvement. Here, we present a case of a 52-year-old patient affected by AML relapsed at CNS after allogeneic bone marrow transplantation who was treated with venetoclax. We evaluated the concentration of the drug in cerebrospinal fluid (CSF) by HPLC MS/MS method on three different occasions to verify the penetration of the drug through the brain–blood barrier and we observed that the concentration in CSF was similar to the IC50 established in vitro.
Establishment and characterisation of a new patient-derived model of myxoid liposarcoma with acquired resistance to trabectedin
Background Myxoid liposarcoma is a histological subtype of liposarcoma particularly sensitive to trabectedin. In clinical use this drug does not cause cumulative toxicity, allowing prolonged treatment, generally until disease progression. No other effective therapies are available for trabectedin-resistant patients. Methods Through repeated in vivo treatment in athymic nude mice, we have obtained a patient-derived xenograft with acquired resistance to trabectedin. Results At basal level, the morphology of the resistant and sensitive models did not differ, in keeping with the finding that the transcriptional profiles of the resistant and sensitive tumours were very similar. After trabectedin treatment adipogenesis was induced in the parental xenograft but not in the resistant one, as assessed by pathological and molecular analysis. A defective transcription-coupled-nucleotide excision repair in the resistant tumour due to mutation of the UVSSA gene may be implicated in the mechanism of resistance. Conclusions This is the first in vivo model of myxoid liposarcoma with acquired resistance to trabectedin. Although further studies are necessary to characterise the resistance mechanisms, this is a useful tool for studying new therapeutic strategies to overcome trabectedin resistance in patients.