Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
251 result(s) for "Matthew Turnbull"
Sort by:
In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2
Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro . Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro . Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.
Convergence in the temperature response of leaf respiration across biomes and plant functional types
Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
BTN3A3 evasion promotes the zoonotic potential of influenza A viruses
Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic 1 . Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans 1 . Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3) 2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure 3 . Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses. A protein that evolved in primates, BTN3A3, is expressed in human airways and shows antiviral activity against avian IAVs but not against human IAVs.
Implications of improved representations of plant respiration in a changing climate
Land-atmosphere exchanges influence atmospheric CO 2 . Emphasis has been on describing photosynthetic CO 2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration ( R d ) and temperature dependencies. This allows characterisation of baseline R d , instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates R d to whole-plant respiration R p , driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline R d increases R p and especially in the tropics. Compared to new baseline, revised instantaneous response decreases R p for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new R d estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how R d aggregates to whole-plant respiration. Our analysis suggests R p could be around 30% higher than existing estimates. New global datasets of upper canopy vegetation respiration have become available and their impact on global carbon cycle models is unclear. Here, the authors show the implications of these parameterisations with a global gridded land model and report significantly higher global plant respiration estimates.
Estimating the cost of sports injuries: A scoping review
Provide an overview of the methods used to estimate the cost of sports-related injury published to date, and to highlight considerations and opportunities for future research. Scoping review. Scopus, MEDLINE and CINHAL were searched from 1st January 2000 to 1st January 2023. Studies were screened by two independent reviewers and were eligible if they reported on a cost analysis or cost estimation of sports related injury. Thirty-one studies fulfilled the inclusion criteria. Twenty-seven studies (87 %) were published since 2014. The type of costs included direct healthcare costs (12 studies), indirect costs (10 studies) and a combination of both (9 studies). Twenty-one studies (68 %) used a bottom-up costing approach to measure costs of sports injury and estimated direct costs from the service rates or fee schedules of health systems, hospital, insurance companies or national insurance boards. A top-down approach was used in seven studies (23 %) to estimate the indirect salary cost of time-loss injuries using data from publicly available resources. Ten studies were from the cost perspective of a sporting organisation (32 %). There was a lack of explicit reporting of the costing method used and the perspective of those bearing the costs. Estimating the cost of sports injuries is an emerging area of research, with publications increasing in recent years. However, there remains a lack of methodological guidance to inform or appraise these studies. The expansion of established cost of illness checklists with sport injury explanations to guide future cost of sports injury studies is recommended.
Polydnavirus Innexins Disrupt Host Cellular Encapsulation and Larval Maturation
Polydnaviruses are dsDNA viruses associated with endoparasitoid wasps. Delivery of the virus during parasitization of a caterpillar and subsequent virus gene expression is required for production of an amenable environment for parasitoid offspring development. Consequently, understanding of Polydnavirus gene function provides insight into mechanisms of host susceptibility and parasitoid wasp host range. Polydnavirus genes predominantly are arranged in multimember gene families, one of which is the vinnexins, which are virus homologues of insect gap junction genes, the innexins. Previous studies of Campoletis sonorensis Ichnovirus Vinnexins using various heterologous systems have suggested the four encoded members may provide different functionality in the infected caterpillar host. Here, we expressed two of the members, vnxG and vnxQ2, using recombinant baculoviruses in susceptible host, the caterpillar Heliothis virescens. Following intrahemocoelic injections, we observed that >90% of hemocytes (blood cells) were infected, producing recombinant protein. Larvae infected with a vinnexin-recombinant baculovirus exhibited significantly reduced molting rates relative to larvae infected with a control recombinant baculovirus and mock-infected larvae. Similarly, larvae infected with vinnexin-recombinant baculoviruses were less likely to survive relative to controls and showed reduced ability to encapsulate chromatography beads in an immune assay. In most assays, the VnxG protein was associated with more severe pathology than VnxQ2. Our findings support a role for Vinnexins in CsIV and more broadly Ichnovirus pathology in infected lepidopteran hosts, particularly in disrupting multicellular developmental and immune physiology.
Leaf day respiration
It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low-flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have beenmade using carbon isotopes, ‘omics’ analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange isnow outdated and it should now be regarded as a central actor of plant carbon-use efficiency.
Acclimation of leaf respiration temperature responses across thermally contrasting biomes
Short-term temperature response curves of leaf dark respiration (R-T) provide insights into a critical process that influences plant net carbon exchange. This includes how respiratory traits acclimate to sustained changes in the environment. Our study analysed 860 high-resolutionR-T(10-70 degrees C range) curves for: (a) 62 evergreen species measured in two contrasting seasons across several field sites/biomes; and (b) 21 species (subset of those sampled in the field) grown in glasshouses at 20 degrees C : 15 degrees C, 25 degrees C : 20 degrees C and 30 degrees C : 25 degrees C, day : night. In the field, across all sites/seasons, variations inR(25)(measured at 25 degrees C) and the leafTwhereRreached its maximum (T-max) were explained by growthT(mean air-Tof 30-d before measurement), solar irradiance and vapour pressure deficit, with growthThaving the strongest influence.R(25)decreased andT(max)increased with rising growthTacross all sites and seasons with the single exception of winter at the cool-temperate rainforest site where irradiance was low. The glasshouse study confirmed thatR(25)andT(max)thermally acclimated. Collectively, the results suggest: (1) thermal acclimation of leafRis common in most biomes; and (2) the highTthreshold of respiration dynamically adjusts upward when plants are challenged with warmer and hotter climates.
Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study
Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait–trait relationships. Our study assessed how high and low N (5mM and 0.4 mM, respectively) and P (1mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log–log A–N or R–N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A–P and R–P relationships were altered by P and N supply. Neither R: A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait–trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait–trait relationships when predicting carbon exchange.
The antiviral state has shaped the CpG composition of the vertebrate interferome to avoid self-targeting
Antiviral defenses can sense viral RNAs and mediate their destruction. This presents a challenge for host cells since they must destroy viral RNAs while sparing the host mRNAs that encode antiviral effectors. Here, we show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions. We propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less self-targeted sequence space. Following interferon (IFN) stimulation, the CpG-targeting antiviral effector zinc-finger antiviral protein (ZAP) reduces the mRNA abundance of multiple host transcripts, providing a mechanistic explanation for the repression of many (but not all) interferon-repressed genes (IRGs). Notably, IRGs tend to be relatively CpG rich. In contrast, highly upregulated ISGs tend to be strongly CpG suppressed. Thus, ZAP is an example of an effector that has not only selected compositional biases in viral genomes but also appears to have notably shaped the composition of host transcripts in the vertebrate interferome.