Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
682
result(s) for
"Matthews, Thomas J."
Sort by:
Island biogeography: Taking the long view of nature’s laboratories
by
Borregaard, Michael K
,
Whittaker, Robert J
,
Matthews, Thomas J
in
Adaptation
,
Archipelagoes
,
Biodiversity
2017
Islands provide classic model biological systems.We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos. Emergent patterns of diversity include predictable variation in island species–area relationships, progression rule colonization from older to younger land masses, and syndromes including loss of dispersability and secondary woodiness in herbaceous plant lineages. Further developments in Earth system science, molecular biology, and trait data for islands hold continued promise for unlocking many of the unresolved questions in evolutionary biology and biogeography.
Journal Article
A season for all things: Phenological imprints in Wikipedia usage and their relevance to conservation
by
Mittermeier, John C.
,
Matthews, Thomas J.
,
Grenyer, Richard
in
Animals
,
Annual variations
,
Biodiversity
2019
Phenology plays an important role in many human-nature interactions, but these seasonal patterns are often overlooked in conservation. Here, we provide the first broad exploration of seasonal patterns of interest in nature across many species and cultures. Using data from Wikipedia, a large online encyclopedia, we analyzed 2.33 billion pageviews to articles for 31,751 species across 245 languages. We show that seasonality plays an important role in how and when people interact with plants and animals online. In total, over 25% of species in our data set exhibited a seasonal pattern in at least one of their language-edition pages, and seasonality is significantly more prevalent in pages for plants and animals than it is in a random selection of Wikipedia articles. Pageview seasonality varies across taxonomic clades in ways that reflect observable patterns in phenology, with groups such as insects and flowering plants having higher seasonality than mammals. Differences between Wikipedia language editions are significant; pages in languages spoken at higher latitudes exhibit greater seasonality overall, and species seldom show the same pattern across multiple language editions. These results have relevance to conservation policy formulation and to improving our understanding of what drives human interest in biodiversity.
Journal Article
Mapping multi-dimensional variability in water stress strategies across temperate forests
by
Esquivel Muelbert, Adriane
,
Universidad de Alcalá. Departamento de Ciencias de la Vida
,
Acil, Nezha
in
631/158/2165
,
631/158/2454
,
631/158/851
2024
Increasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established. By combining eight water-stress-related functional traits with forest inventory data from the USA and Europe, we investigated the community-level trait coordination and the biogeographic patterns of trait associations for woody plants, and analysed the relationships between the trait associations and climate factors. We find that the trait associations at the community level are consistent with those found at the species level. Traits associated with acquisitive-conservative strategies forms one dimension of variation, while leaf turgor loss point, associated with stomatal water regulation strategy, loads along a second dimension. Surprisingly, spatial patterns of community-level trait association are better explained by temperature than by aridity, suggesting a temperature-driven adaptation. These findings provide a basis to build predictions of forest response under water stress, with particular potential to improve simulations of tree mortality and forest biomass accumulation in a changing climate.
Journal Article
Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives
2014
Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche‐based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral‐ and niche‐based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research. We synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we focus consideration on recent developments aimed at unifying neutral‐ and niche‐based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory.
Journal Article
A roadmap for island biology: 50 fundamental questions after 50 years of \The Theory of Island Biogeography\
by
Fernández-Palacios, José María
,
Vargas, Pablo
,
Papadopoulou, Anna
in
Azores
,
biocenosis
,
biodiversity conservation
2017
Aims The 50th anniversary of the publication of the seminal book, The Theory of Island Biogeography, by Robert H. MacArthur and Edward O. Wilson, is a timely moment to review and identify key research foci that could advance island biology. Here, we take a collaborative horizon-scanning approach to identify 50 fundamental questions for the continued development of the field. Location Worldwide. Methods We adapted a well-established methodology of horizon scanning to identify priority research questions in island biology, and initiated it during the Island Biology 2016 conference held in the Azores. A multidisciplinary working group prepared an initial pool of 187 questions. A series of online surveys was then used to refine a list of the 50 top priority questions. The final shortlist was restricted to questions with a broad conceptual scope, and which should be answerable through achievable research approaches. Results Questions were structured around four broad and partially overlapping island topics, including: (Macro)Ecology and Biogeography, (Macro)Evolution, Community Ecology, and Conservation and Management. These topics were then subdivided according to the following subject areas: global diversity patterns (five questions in total); island ontogeny and past climate change (4); island rules and syndromes (3); island biogeography theory (4); immigration–speciation–extinction dynamics (5); speciation and diversification (4); dispersal and colonization (3); community assembly (6); biotic interactions (2); global change (5); conservation and management policies (5); and invasive alien species (4). Main conclusions Collectively, this cross-disciplinary set of topics covering the 50 fundamental questions has the potential to stimulate and guide future research in island biology. By covering fields ranging from biogeography, community ecology and evolution to global change, this horizon scan may help to foster the formation of interdisciplinary research networks, enhancing joint efforts to better understand the past, present and future of island biotas.
Journal Article
general dynamic model: towards a unified theory of island biogeography?
by
Matthews, Thomas J.
,
Borregaard, Michael K.
,
Whittaker, Robert J.
in
Biogeography
,
Carrying capacity
,
causal model
2016
AIM: Island biogeography focuses on understanding the processes that underlie a set of wellâdescribed patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subductionâbased island arcs and continental fragment islands. LOCATION: A conceptual analysis and a simulation of oceanic islands. METHODS: We describe the causal relationships between evolutionary and ecological processes implied by the GDM, implement them as a computer simulation and use this to simulate two alternative geological scenarios. RESULTS: The dynamics of species richness and rates of evolutionary processes in simulations derived from the mechanistic assumptions of the GDM corresponded broadly to those initially suggested, with the exception of trends in extinction rates. Expanding the model to incorporate different scenarios of island ontogeny and isolation revealed a sensitivity of evolutionary dynamics to attributes of island geology. MAIN CONCLUSIONS: We argue that the GDM of oceanic island biogeography has the potential to provide a unified framework for island biogeography, integrating geological, ecological and evolutionary processes. Our simulations highlight how the geological dynamics of distinct island types are predicted to lead to markedly different evolutionary dynamics. This sets the stage for a more predictive theory incorporating the processes governing temporal dynamics of species diversity on islands.
Journal Article
Mapping Lightscapes: Spatial Patterning of Artificial Lighting in an Urban Landscape
by
Fairbrass, Alison J.
,
Rogers, Christopher D. F.
,
Davies, Gemma
in
Case studies
,
Cities
,
Data collection
2013
Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.
Journal Article
L-band radar quantifies major disturbance of birds by fireworks in an urban area
by
Jahangir, Mohammed
,
Matthews, Thomas J.
,
Antoniou, Michail
in
631/158/858
,
704/158/858
,
Birds
2023
Fireworks and other pyrotechnics are acknowledged as sources of disturbance to wildlife, with evidence that many species react adversely to their sight and sound at discharge. However, how firework releases impact wildlife within a city landscape is poorly understood. Here, we explore the effect of fireworks on urban birds using an L-band staring radar (90-degree sector out to a 5 km range) to capture bird activity derived from flight tracks (i.e. 3D visualisation of individual flying birds built from radar detections) within the city of Birmingham, UK. Comparing the tracks between baseline periods with no fireworks and periods where fireworks are commonly discharged using a null model indicated that birds flew at higher elevations during firework periods (standardised effect sizes of 17.11, 26.54 and 5.83, for Diwali, Bonfire Night, and New Year's Eve, respectively). Birds also flew in more significant numbers (standardised effect sizes of 23.41, 7.98 and 7.19 for Diwali, Bonfire Night, and New Year's Eve, respectively). Therefore, bird activity was elevated during firework events at a time of night when many would otherwise be roosting. Such disturbance may have implications for avian biology since large public firework events occur at colder times of the year in the UK when birds have elevated thermoregulatory costs.
Journal Article
Systematic variation in North American tree species abundance distributions along macroecological climatic gradients
by
Kubota, Yasuhiro
,
Matthews, Thomas J.
,
Woodall, Christopher W.
in
Abundance
,
climate
,
Climate change
2019
Aim The species abundance distribution (SAD) is a fundamental pattern in macroecology. Understanding how SADs vary spatially, and identifying the variables that drive any change, is important from a theoretical perspective because it enables greater understanding of the factors that underpin the relative abundance of species. However, precise knowledge on how the form of SADs varies across large (continental) scales is limited. Here, we use the shape parameter of the gambin distribution to assess how meta‐community‐scale SAD shape varies spatially as a function of various climatic variables and dataset characteristics. Location Eastern North America (ENA). Time period Present day. Major taxa studied Trees. Methods Using an extensive continental‐scale dataset of 863,930 individual trees in plots across ENA sampled using a standardized method, we use a spatial regression framework to examine the effect of temperature and precipitation on the form of the SAD. We also assess whether the prevalence of multimodality in the SAD varies spatially across ENA as a function of temperature and precipitation, in addition to other sample characteristics. Results We found that temperature, precipitation and species richness can explain two‐thirds of the variation in tree SAD form across ENA. Temperature had the largest effect on SAD shape, and it was found that increasing temperature resulted in more logseries‐like SAD shapes (i.e. SADs with a relatively higher proportion of rarer species). We also found spatial variation in SAD multimodality as a function of temperature and species richness. Main conclusions Our results indicate that temperature is a key environmental driver governing the form of ENA tree meta‐community‐scale SADs. This finding has implications for our understanding of local‐scale variation in tree abundance and suggests that niche factors and environmental filtering are important in the structuring of ENA tree communities at larger scales.
Journal Article
A global consistent positive effect of urban green area size on bird richness
by
Matthews, Thomas J.
,
Isabel Bellocq, M.
,
Leveau, Lucas M.
in
Accounting
,
Animal Physiology
,
Biodiversity
2019
Background
Although the species-urban green area relationship (SARu) has been analyzed worldwide, the global consistency of its parameters, such as the fit and the slope of models, remains unexplored. Moreover, the SARu can be explained by 20 different models. Therefore, our objective was to evaluate which models provide a better explanation of SARus and, focusing on the power model, to evaluate the global heterogeneity in its fit and slope.
Methods
We tested the performance of multiple statistical models in accounting for the way in which species richness increases with area, and examined whether variability in model form was associated with various methodological and environmental factors. Focusing on the power model, we analyzed the global heterogeneity in the fit and slope of the models through a meta-analysis.
Results
Among 20 analyzed models, the linear model provided the best fit to the most datasets, was the top ranked model according to our efficiency criterion, and was the top overall ranked model. The Kobayashi and power models were the second and third overall ranked models, respectively. The number of green areas and the minimum number of species within a green area were the only significant variables explaining the variation in model form and performance, accounting for less than 10% of the variation. Based on the power model, there was a consistent overall fit (
r
2
= 0.50) and positive slope of 0.20 for the species richness increase with area worldwide.
Conclusions
The good fit of the linear model to our SARu datasets contrasts with the non-linear SAR frequently found in true and non-urban habitat island systems; however, this finding may be a result of the small sample size of many SARu datasets. The overall power model slope of 0.20 suggests low levels of isolation among urban green patches, or alternatively that habitat specialist and area sensitive species have already been extirpated from urban green areas.
Journal Article