Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Maughan, Michele N."
Sort by:
Development of an automated human scent olfactometer and its use to evaluate detection dog perception of human scent
by
Medrano, Andrea C.
,
Greubel, Robin R.
,
Prada-Tiedemann, Paola A.
in
Analysis
,
Animal experimentation
,
Detection dogs
2024
Working Dogs have shown an extraordinary ability to utilize olfaction for victim recovery efforts. Although instrumental analysis has chemically characterized odor volatiles from various human biospecimens, it remains unclear what perceptually constitutes human scent (HS) for dogs. This may be in part due to the lack of methodology and equipment to train and evaluate HS perception. The aims of this research were 1) to develop an automated human scent olfactometer (AHSO) to present HS to dogs in a controlled setting and 2) use the AHSO to evaluate dogs’ response to different scented articles and individual components of HS. A human volunteer was placed in a clear acrylic chamber and using a vacuum pump and computer-controlled valves, the headspace of this chamber was carried to one of three ports in a different room. Dogs were trained to search all three ports of the olfactometer and alert to the one containing HS. In Experiment 1 and 2, the AHSO was validated by testing two dogs naïve to HS (Experiment 1) and five certified Search and Rescue (SAR) teams naïve to the apparatus (Experiment 2). All dogs showed sensitivity and specificity to HS > 95% in the apparatus. In Experiment 3, we used a spontaneous generalization paradigm to evaluate generalization from the HS chamber to different scented articles exposed to the same volunteer and to a breath sample. Dogs’ response rate to the different scented articles was < 10% but exceeded 40% for the breath sample. In Experiment 4, we replicated this result by re-testing spontaneous generalization to breath and when the volunteer had breath exhausted/removed from the chamber. Dogs’ response rate to breath alone was 88% and only 50% when breath was removed. Altogether, the data indicate that exhaled breath is an important and salient component of HS under these conditions.
Journal Article
Chemical Characterization of Human Body Odor Headspace Components
by
Gadberry, Jenna D.
,
Prada-Tiedemann, Paola A.
,
Aviles-Rosa, Edgar O.
in
Biomarkers
,
Chambers
,
chemical characterization
2024
This study focused on evaluating human body odor volatiles using a chamber approach. Ten participants were asked to sit inside the chamber for 1 h, while using SPME as the extraction technique for vapor sampling. A total of 105 compounds were detected across participants, with nonanal having the highest frequency. PCA statistical analysis depicted tighter clustering in female whole-body odor profiles when compared to males, thus corroborating gender odor differences. Concurrently, various biospecimens (hand, axillary, breath) from the same participants allowed for a comparison between whole-body and individual biospecimen odor signatures. When comparing whole-body sampling and distinctive biospecimens, nonanal and decanal were the only odor volatiles shared. Statistical clustering depicted higher similarity within the odor profiles of individual biospecimens compared to odor profiles of the whole body, indicating distinctiveness of the odor chemical landscape as a function of sampling region. Overall, this study demonstrated that SPME-GC/MS methodology was successful in the extraction, detection, and identification of previously reported human scent volatiles when employing the human chamber for whole-body sampling. Our presented testing paradigm allows for a direct comparison of odor volatiles across the full body and specific body locations that allows odor markers to be furthered exploited for diagnostic and biological detection contexts.
Journal Article
The Use and Potential of Biomedical Detection Dogs During a Disease Outbreak
by
Evans, Kelley L.
,
Best, Eric M.
,
Nolan, Patrick Lawrence
in
Airports
,
biomedical detection dog (BMDD)
,
canine
2022
Biomedical detection dogs offer incredible advantages during disease outbreaks that are presently unmatched by current technologies, however, dogs still face hurdles of implementation due to lack of inter-governmental cooperation and acceptance by the public health community. Here, we refine the definition of a biomedical detection dog, discuss the potential applications, capabilities, and limitations of biomedical detection dogs in disease outbreak scenarios, and the safety measures that must be considered before and during deployment. Finally, we provide recommendations on how to address and overcome the barriers to acceptance of biomedical detection dogs through a dedicated research and development investment in olfactory sciences.
Journal Article
Evaluation of a lateral flow immunoassay for the detection of the synthetic opioid fentanyl
by
Sisco, Edward
,
Maughan, Michele N.
,
Biggs, Tracey D.
in
Analgesics
,
Analgesics, Opioid - analysis
,
Animals
2019
•The lateral flow immunoassays detected fentanyl in both urine and saliva.•The lateral flow immunoassays detected fentanyl following an in vivo exposure.•These lateral flow immunoassays cross-reacted with several fentanyl analogs.•Fentanyl was detected in case samples by the lateral flow immunoassays.
In 2017, 47,600 overdose deaths were reported to be associated with the abuse of opioids, including prescription painkillers (e.g. oxycodone), opiates (e.g. heroin), or synthetic opioids (e.g. fentanyl) within the United States. The recent spike in the presence of synthetic opioids in lots of heroin distributed on the street present specific and significant challenges to law enforcement. Synthetic opioids are extremely toxic substances, which can easily be inhaled. This type of exposure can lead to accidental overdoses by law enforcement and other first responders answering calls involving illicit drugs containing these substances. Due to this extreme toxicity, it is important for these individuals to have tools that can be easily deployed for accurate presumptive field tests. Currently, there are only a limited number of presumptive tests available for fentanyl detection. In this study, we addressed this technology gap by evaluating newly developed lateral flow immunoassays (LFIs) designed for the detection of fentanyl and its derivatives. These LFIs were evaluated for effectiveness in different biofluid matrices, following an in vivo exposure, cross-reactivity with fentanyl analogs, and in case samples. This study demonstrates that LFIs have the potential to be used by law enforcement for the detection of synthetic opioids.
Journal Article
Transcriptional analysis of the innate immune response of ducks to different species-of-origin low pathogenic H7 avian influenza viruses
by
Spackman, Erica V
,
Preskenis, Lauren A
,
Dougherty, Lorna S
in
Animals
,
Avian influenza
,
Avian influenza viruses
2013
Background
Wild waterfowl, including ducks, represent the classic reservoir for low pathogenicity avian influenza (LPAI) viruses and play a major role in the worldwide dissemination of AIV. AIVs belonging to the hemagglutinin (H) 7 subtype are of epidemiological and economic importance due to their potential to mutate into a highly pathogenic form of the virus. Thus far, however, relatively little work has been conducted on elucidating the host-pathogen interactions of ducks and H7 LPAIVs. In the current study, three H7 LPAIVs isolated from either chicken, duck, or turkey avian species were evaluated for their comparative effect on the transcriptional innate immune response of ducks.
Results
Three H7 LPAIV isolates, chicken-origin (A/chicken/Maryland/MinhMa/2004), duck-origin (A/pintail/Minnesota/423/1999), and turkey-origin (A/turkey/Virginia/SEP-67/2002) were used to infect Pekin ducks. At 3 days post-infection, RNA from spleen tissue was used for transcriptional analysis using the Avian Innate Immune Microarray (AIIM) and quantitative real-time RT-PCR (qRT-PCR). Microarray analysis revealed that a core set of 61 genes was differentially regulated in response to all three LPAIVs. Furthermore, we observed 101, 135, and 628 differentially expressed genes unique to infection with the chicken-, duck-, or turkey-origin LPAIV isolates, respectively. qRT-PCR results revealed significant (p<0.05) induction of IL-1β, IL-2, and IFNγ transcription, with the greatest induction observed upon infection with the chicken-origin isolate. Several key innate immune pathways were activated in response to LPAIV infection including the toll-like receptor and RIG-I-like receptor pathways.
Conclusions
Pekin ducks elicit a unique innate immune response to different species-of-origin H7 LPAIV isolates. However, twelve identifiable genes and their associated cell signaling pathways (RIG-I, NOD, TLR) are differentially expressed regardless of isolate origin. This core set of genes are critical to the duck immune response to AI. These data provide insight into the potential mechanisms employed by ducks to tolerate AI viral infection.
Journal Article