Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Mavromatis, Theodoros"
Sort by:
Evaluation of Reanalysis Data in Meteorological and Climatological Applications: Spatial and Temporal Considerations
Due to their homogenous nature and high spatial and temporal resolution (compared to raw observations), they are used for evaluating climate models, irrigation management decisions, soil water balance evolution, flooding predictions, and for many other purposes. In this context, this Special Issue (SI) entitled “Evaluation of Reanalysis Data in Meteorological and Climatological Applications: Spatial and Temporal Considerations”, includes articles dedicated not only to the evaluation of reanalysis products against observations [4,5,6,7] but also to exploring the effects of uncertainties using reanalysis data in model outputs [8,9]. An assessment of the performance of four different precipitation databases of alternative sources (two from gridded analyses, MERGE and CHIRPS, and the other two from ECMWF reanalysis, ERA5 and ERA5Land) with respect to observations from seven weather stations located in a Brazilian region (SEALBA)—comprising three states and conducted during 2001–2020—was attempted by Ewurton et al.
Demonstrating the Use of the Yield-Gap Concept on Crop Model Calibration in Data-Poor Regions: An Application to CERES-Wheat Crop Model in Greece
Yield estimations at global or regional spatial scales have been compromised due to poor crop model calibration. A methodology for estimating the genetic parameters related to grain growth and yield for the CERES-Wheat crop model is proposed based on yield gap concept, the GLUE coefficient estimator, and the global yield gap atlas (GYGA). Yield trials with three durum wheat cultivars in an experimental farm in northern Greece from 2004 to 2010 were used. The calibration strategy conducted with CERES-Wheat (embedded in DSSAT v.4.7.5) on potential mode taking into account the year-to-year variability of relative yield gap Yrg (YgC_adj) was: (i) more effective than using the average site value of Yrg (YgC_unadj) only (the relative RMSE ranged from 10 to 13% for the YgC_adj vs. 48 to 57% for YgC_unadj) and (ii) superior (slightly inferior) to the strategy conducted with DSSAT v.4.7.5 (DSSAT v.3.5—relative RMSE of 5 to 8% were found) on rainfed mode. Earlier anthesis, maturity, and decreased potential yield (from 2.2 to 3.9% for 2021–2050, and from 5.0 to 7.1% for 2071–2100), due to increased temperature and solar radiation, were found using an ensemble of 11 EURO-CORDEX regional climate model simulations. In conclusion, the proposed strategy provides a scientifically robust guideline for crop model calibration that minimizes input requirements due to operating the crop model on potential mode. Further testing of this methodology is required with different plants, crop models, and environments.
Groundwater Depletion. Are Environmentally Friendly Energy Recharge Dams a Solution?
Groundwater is a primary source of drinking water; however, groundwater depletion constitutes a common phenomenon worldwide. The present research aims to quantify groundwater depletion in three aquifers in Greece, including the porous aquifers in the Eastern Thermaikos Gulf, Mouriki, and the Marathonas basin. The hypothesis is to reverse the phenomenon by adopting an environmentally acceptable methodology. The core of the suggested methodology was the simulation of groundwater using MODFLOW-NWT and the application of managed aquifer recharge (MAR) by using water from small dams after the generation of hydropower. Surface run-off and groundwater recharge values were obtained from the ArcSWAT simulation. The predicted future climatic data were obtained from the Coordinated Regional Climate Downscaling Experiment (CORDEX), considering the Representative Concentration Pathway (RCP) 4.5 and the climate model REMO2009. Groundwater flow simulations from 2010 to 2020 determined the existing status of the aquifers. The simulation was extended to the year 2030 to forecast the groundwater regime. In all three sites, groundwater depletion occurred in 2020, while the phenomenon will be exacerbated in 2030, as depicted in the GIS maps. During 2020, the depletion zones extended 11%, 28%, and 23% of the aquifers in Mouriki, the Eastern Thermaikos Gulf, and the Marathonas basin, respectively. During 2030, the depletion zones will increase to 50%, 42%, and 44% of the aquifers in Mouriki, the Eastern Thermaikos Gulf, and the Marathonas basin, respectively. The simulation was extended to 2040 by applying MAR with the water from the existing dams as well as from additional dams. In all sites, the application of MAR contributed to the reversal of groundwater depletion, with a significant amount of hydropower generated. Until 2040, the application of MAR will reduce the depletion zones to 0.5%, 9%, and 12% of the aquifers in Mouriki, the Eastern Thermaikos Gulf, and the Marathonas basin, respectively. Apart from over-pumping, climatic factors such as long periods of drought have exacerbated groundwater depletion. The transformation of dams to mini-scale hydropower facilities combined with MAR will benefit clean energy production, save CO2 emissions, and lead to an economically feasible strategy against groundwater depletion.
Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties
Grapevine phenology is particularly sensitive to temperature variations, with changes in climate shifting events earlier and advancing berry maturation into a hotter part of the growing cycle. Consequently, serious concerns regarding the negative influences of climate change on global wine quality have been raised, with the scientific community focusing on documenting these changes to better understand and address the impacts. This study adds to this knowledge by investigating air temperature and precipitation trends over the last 40 years (i.e., 1980–2019). Over the most recent period of records (i.e., 2000–2019), minimum air temperatures significantly increased at a higher rate than maximum temperatures. On the other hand, precipitation showed the least significant trends over time. In addition, wine quality assessment and identification of the most significant weather variables and climatic indices that correlate with wine quality rating scores have also been performed. To serve this purpose, data of wine quality ratings for nine white (W) and two red (R) indigenous winegrape varieties (Vitis vinifera L., cvs) grown in Greece were obtained from the database of Thessaloniki International Wine and Spirits Competition. The results showed a statistically significant upward trend over the recent past in the majority of the varieties studied. To examine future periods, mixed-effect model outputs for Greek wine-producing regions combining an ensemble dataset using RCP4.5 and RCP8.5 emission pathways during two future periods (i.e., 2041–2065 and 2071–2095) predicts wines of higher quality, especially during the latter time period. These results reveal that Greek wine quality rating variations are mainly driven by higher maximum temperatures and drier conditions during the growing season of the grapevines. However, two important issues need to be more fully explored in Greece and elsewhere; (1) non-linear responses to warming where wine quality could suffer above varietally specific optimum temperature thresholds and (2) a better understanding of how other non-climate-related factors (e.g., canopy management, winemaking innovations) affect wine quality in the face of a changing climate.
Crop–climate relationships of cereals in Greece and the impacts of recent climate trends
Notwithstanding technological developments, agricultural production is still affected by uncontrollable factors, such weather and climate. Within this context, the present study aims at exploring the relative influence of growing season climate on the yields of major cereals (hard and soft wheat, maize, and barley) on a regional scale in Greece. To this end, crop–climate relationships and the impacts of climate trends over the period 1978–2005 were explored using linear regression and change point analysis (CPA). Climate data used include maximum (Tx) and minimum temperature (Tn), diurnal temperature range (Tr), precipitation (Prec), and solar radiation (Rad). Temperature effects were the most substantial. Yields reduced by 1.8–7.1 %/°C with increasing Tx and by 1.4–6.1 %/°C with decreasing Tr. The warming trends of Tn caused bilateral yield effects (from −3.7 to 8.4 %/°C). The fewer significantly increasing Rad and decreasing Prec anomalies were associated with larger yield decreases (within the range of 2.2 % MJ/m 2 /day (for maize) to 4.9 % MJ/m 2 /day (for hard wheat)) and smaller yield increases (from 0.04 to 1.4 %/mm per decade), respectively. Wheat and barley—the most vulnerable cereals—were most affected by the trends of extreme temperatures and least by Tr. On the contrary, solar radiation has proven to be the least affecting climate variable on all cereals. Despite the similarity in the direction of crop responses with both analyses, yield changes were much more substantial in the case of CPA analysis. In conclusion, regional climate change has affected Greek cereal productivity, in a few, but important for cereal production, regions. The results of this study are expected to be valuable in anticipating the effects of weather/climate on other warm regions worldwide, where the upper temperature limit for some cereals and further changes in climate may push them past suitability for their cultivation.
Is inflammation a significant predictor of bile duct injury during laparoscopic cholecystectomy?
Background Bile duct injuries (BDI) have been reported to occur more frequently during laparoscopic cholecystectomy (LC) compared to open cholecystectomy (OC). Several studies have demonstrated various potential predisposing factors for BDI. However, there is a controversy as to whether gallbladder inflammation is a significant predictor for BDI. Therefore, out primary aim was to investigate the relationship between inflammation and BDI at LC, and secondarily to present the management and clinical outcome of BDI. Methods We recorded all consecutive LC performed between 1993 and 2005 in our institution by nine staff surgeons. BDI were classified according to Strasberg’s classification. Simple and multivariate logistic regression analysis was performed to evaluate the association between inflammation and BDI occurrence during LC. Results There were 2,184 patients. Among those, 344 had inflammation (16%). The conversion rate was 5% and was higher among male, elder patients, and those with inflammation. The BDI incidence was 0.69% (0.14% for major and 0.55% for minor injuries) and it was significantly higher in those with inflammation compared to those without inflammation ( p  = 0.01). In particular, the risk for BDI was almost 3.5 times higher in those with inflammation (OR = 3.61, 95% CI 1.27–10.21). Inflammation remained an independent risk factor for BDI even after adjustment for potential confounders. Among patients sustaining injury, one died and two have recurrent cholangitis. No association was observed between clinical outcome and management of BDI, time of diagnosis, sex, and inflammation. Conclusion We revealed that inflammation is an independent predictor of BDI occurrence during LC. Therefore, it would be advisable for surgeons to not hesitate to convert a LC to an OC in the presence of inflammation.
A Modified Technique for Laparoscopic Spleen Preserving Distal Pancreatectomy
Spleen preserving laparoscopic distal pancreatectomy is considered as first choice operation for symptomatic benign or small malignant lesions located at the body or tail of the pancreas. The two main surgical techniques that have been proposed and widely adopted for spleen preserving laparoscopic distal pancreatectomy are the Warshaw and Kimura techniques. A novel modified approach for laparoscopic spleen preserving distal pancreatectomy is presented. The technique was initially performed in a 57-year-old female patient with mucinous cystadenoma. Following the surgical planes created by the fascia fusion and the organ rotation during embryogenesis (fascia of Toldt and renal fascia) with the patient in a right lateral decibutus position, the tumor was accessed retroperitoneally, without dividing the gastrocolic ligament and entering the lesser sac. The tail of the pancreas was mobilized anteriorly and medially, the lesion was visually identified and resected, and short gastric and left gastroepiploic vessels were preserved. We present the technical details and tips; we define the surgical anatomy of it and discuss the perioperative course of the patient as well as the possible benefits of the proposed technique. The proposed technique seems to be safe, easy to perform, and may present a promising alternative approach for patients with pancreatic disease that can be treated by laparoscopic pancreatectomy.
Evaluation of Gridded Meteorological Data for Crop Sensitivity Assessment to Temperature Changes: An Application with CERES-Wheat in the Mediterranean Basin
In areas with a limited or non-existent network of observing stations, it is critical to assess the applicability of gridded datasets. This study examined the agreement of Agri4Cast and E-OBS at two spatial resolutions (10 km (EOBS-0.1) and 25 km (EOBS-0.25)) in 13 Mediterranean stations nearby to wheat crops and how this agreement may influence simulated potential development and production with the crop simulation model (CSM) CERES-Wheat in historical and near-future (2021–2040) (NF) periods. A wide range of sensitivity tests for maximum and minimum air temperatures and impact response surfaces were used for the future projections. EOBS-0.1 showed the lowest discrepancies over observations. It underestimated statistical measures of temperature and precipitation raw data and their corresponding extreme indices and overestimated solar radiation. These discrepancies caused small delays (5–6 days, on average) in crop development and overestimations (8%) in grain production in the reference period. In the NF, the use of EOBS-0.1 reduced by a few (2–3) days the biases in crop development, while yield responses differed among stations. This research demonstrated the ability of EOBS-0.1 for agricultural applications that depend on potential wheat development and productivity in historical and future climate conditions expected in the Mediterranean basin.
Spatiotemporal Evolution of Seasonal Crop-Specific Climatic Indices under Climate Change in Greece Based on EURO-CORDEX RCM Simulations
This study presents an updated assessment of the projected climate change over Greece in the near future (2021–2050) and at the end of the 21st century (2071–2100) (EOC), relative to the reference period 1971–2000, and focusing on seasonal crop-specific climatic indices. The indices include days (d) with: a maximum daily near-surface temperature (TASMAX) > 30 °C in Spring, a TASMAX > 35 °C in Summer (hot days), a minimum daily near-surface temperature (TASMIN) < 0 °C (frost days) in Spring, a TASMIN > 20 °C (tropical nights) in Spring–Summer and the daily precipitation (PR) > 1 mm (wet days) in Spring and Summer covering the critical periods in which wheat, tomatoes, cotton, potato, grapes, rice and olive are more sensitive to water and/or temperature stress. The analysis is based on an ensemble of 11 EURO-CORDEX regional climate model simulations under the influence of a strong, a moderate, and a no mitigation Representative Concentration Pathway (RCP2.6, RCP4.5 and RCP8.5, respectively). The indices related to TASMAX are expected to increase by up to 11 days in Spring and 40 days in Summer, tropical nights to rise by up to 50 days, frost days to decrease by up to 20 days, and wet days to decline by up to 9 days in Spring and Summer, at the EOC with an RCP8.5. The increased heat stress and water deficit are expected to have negative crop impacts, in contrast to the positive effects anticipated by the decrease in frost days. This study constitutes a further step towards identifying the commodities and/or regions in Greece which, under climate change, are or will be significantly impacted.
Evaluating Non-Stationarity in Precipitation Intensity-Duration-Frequency Curves for the Dallas–Fort Worth Metroplex, Texas, USA
Extreme precipitation has become more frequent and intense with time and space. Infrastructure design tools such as Intensity-Duration-Frequency (IDF) curves still rely on historical precipitation and stationary assumptions, risking current and future urban infrastructure. This study developed IDF curves by incorporating non-stationarity trends in precipitation annual maximum series (AMS) for Dallas–Fort Worth, the fourth-largest metropolitan region in the United States. A Pro-NEVA tool was used to develop non-stationary IDF curves, taking historical precipitation AMS for seven stations that showed a non-stationary trend with time as a covariate. Four statistical indices—the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean Square Error (RMSE), and Nash–Sutcliffe Efficiency (NSE)—were used as the model goodness of fit evaluation. The lower AIC, BIC, and RMSE values and higher NSE values for non-stationary models indicated a better performance compared to the stationary models. Compared to the traditional stationary assumption, the non-stationary IDF curves showed an increase (up to 75%) in the 24 h precipitation intensity for the 100-year return period. Using the climate change adaptive non-stationary IDF tool for the DFW metroplex and similar urban regions could enable decision makers to make climate-informed choices about infrastructure investments, emergency preparedness measures, and long-term urban development and water resource management planning.