Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Max M. Villa"
Sort by:
Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake
Background Short-chain fatty acids (SCFAs) derived from gut bacteria are associated with protective roles in diseases ranging from obesity to colorectal cancers. Intake of microbially accessible dietary fibers (prebiotics) lead to varying effects on SCFA production in human studies, and gut microbial responses to nutritional interventions vary by individual. It is therefore possible that prebiotic therapies will require customizing to individuals. Results Here, we explored prebiotic personalization by conducting a three-way crossover study of three prebiotic treatments in healthy adults. We found that within individuals, metabolic responses were correlated across the three prebiotics. Individual identity, rather than prebiotic choice, was also the major determinant of SCFA response. Across individuals, prebiotic response was inversely related to basal fecal SCFA concentration, which, in turn, was associated with habitual fiber intake. Experimental measures of gut microbial SCFA production for each participant also negatively correlated with fiber consumption, supporting a model in which individuals’ gut microbiota are limited in their overall capacity to produce fecal SCFAs from fiber. Conclusions Our findings support developing personalized prebiotic regimens that focus on selecting individuals who stand to benefit, and that such individuals are likely to be deficient in fiber intake. FLeuumVMoUypG_CgDJN_5g Video Abstract
Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut
How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration. The gut is home to a large and diverse community of bacteria and other microbes, known as the gut microbiota. The makeup of this community is important for the health of both the host and its residents. For instance, many gut bacteria help to digest food or keep disease-causing bacteria in check. In return, the host provides them with nutrients. When this balance is disturbed, the host is exposed to risks such as infections. In particular, treatments with antibiotics that kill gut bacteria can lead to side effects like diarrhea, because the gut becomes recolonized with harmful bacteria including Clostridium difficile and Salmonella. Reese et al. have now investigated what happens to the gut environment after antibiotic treatment and how the gut microbiota recovers. Mice treated with broad-spectrum antibiotics showed an increase in the “redox potential” of their gut environment. Redox potential captures a number of measures of the chemical makeup of an environment, and provides an estimate for how efficiently some bacteria in that environment can grow. Some of the change in redox potential came from the host’s own immune system releasing chemicals as it reacted to the effects of the treatment. However, Reese et al. found that treating gut bacteria in an artificial gut – which has no immune system – also increased the redox potential. This experiment suggests that bacteria actively shape their chemical environment in the gut. After the treatment, bacteria that thrive under high redox potentials, which include some disease-causing species, recovered first and fastest. This, in turn, helped to bring redox potential back to how it was before the treatment. Although the gut’s chemical environment recovered, some bacterial species were wiped out by the antibiotic treatment. The microbiota only returned to its previous state when the treated mice were housed together with non-treated mice. This was expected because mice that live together commonly exchange microbes, for instance by eating each other’s feces, and the treated mice received new species to replenish their microbiota. These findings are important because they show that the chemical environment shapes and is shaped by the bacterial communities in the gut. Future research may investigate if altering redox potential in the gut could help to keep the microbiota healthier in infections and diseases of the digestive tract.
Interindividual Variation in Dietary Carbohydrate Metabolism by Gut Bacteria Revealed with Droplet Microfluidic Culture
Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs. Culture and screening of gut bacteria enable testing of microbial function and therapeutic potential. However, the diversity of human gut microbial communities (microbiota) impedes comprehensive experimental studies of individual bacterial taxa. Here, we combine advances in droplet microfluidics and high-throughput DNA sequencing to develop a platform for separating and assaying growth of microbiota members in picoliter droplets (MicDrop). MicDrop enabled us to cultivate 2.8 times more bacterial taxa than typical batch culture methods. We then used MicDrop to test whether individuals possess similar abundances of carbohydrate-degrading gut bacteria, using an approach which had previously not been possible due to throughput limitations of traditional bacterial culture techniques. Single MicDrop experiments allowed us to characterize carbohydrate utilization among dozens of gut bacterial taxa from distinct human stool samples. Our aggregate data across nine healthy stool donors revealed that all of the individuals harbored gut bacterial species capable of degrading common dietary polysaccharides. However, the levels of richness and abundance of polysaccharide-degrading species relative to monosaccharide-consuming taxa differed by up to 2.6-fold and 24.7-fold, respectively. Additionally, our unique dataset suggested that gut bacterial taxa may be broadly categorized by whether they can grow on single or multiple polysaccharides, and we found that this lifestyle trait is correlated with how broadly bacterial taxa can be found across individuals. This demonstration shows that it is feasible to measure the function of hundreds of bacterial taxa across multiple fecal samples from different people, which should in turn enable future efforts to design microbiota-directed therapies and yield new insights into microbiota ecology and evolution. IMPORTANCE Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs.
Effects of Cell-Attachment and Extracellular Matrix on Bone Formation In Vivo in Collagen-Hydroxyapatite Scaffolds
Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA) scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.
Visualizing Osteogenesis In Vivo Within a Cell–Scaffold Construct for Bone Tissue Engineering Using Two-Photon Microscopy
Tissue-engineering therapies have shown early success in the clinic, however, the cell–biomaterial interactions that result in successful outcomes are not yet well understood and are difficult to observe. Here we describe a method for visualizing bone formation within a tissue-engineered construct in vivo , at a single-cell resolution, and in situ in three dimensions using two-photon microscopy. First, two-photon microscopy and histological perspectives were spatially linked using fluorescent reporters for cells in the skeletal lineage. In the process, the tissue microenvironment that precedes a repair-focused study was described. The distribution and organization of type I collagen in the calvarial microenvironment was also described using its second harmonic signal. Second, this platform was used to observe in vivo , for the first time, host cells, donor cells, scaffold, and new bone formation within cell-seeded constructs in a bone defect. We examined constructs during bone repair 4 and 6 weeks after implantation. New bone formed on scaffolds, primarily by donor cells. Host cells formed a new periosteal layer that covered the implant. Scaffold resorption appeared to be site specific, where areas near the top were removed and deeper areas were completely embedded in new mineral. Visualizing the in vivo progression of the cell and scaffold microenvironment will contribute to our understanding of tissue-engineered regeneration and should lead to the development of more streamlined and therapeutically powerful approaches.
Interindividual Variation in Dietary Carbohydrate Metabolism by Gut Bacteria Revealed with Droplet Microfluidic Culture
ABSTRACT Culture and screening of gut bacteria enable testing of microbial function and therapeutic potential. However, the diversity of human gut microbial communities (microbiota) impedes comprehensive experimental studies of individual bacterial taxa. Here, we combine advances in droplet microfluidics and high-throughput DNA sequencing to develop a platform for separating and assaying growth of microbiota members in picoliter droplets (MicDrop). MicDrop enabled us to cultivate 2.8 times more bacterial taxa than typical batch culture methods. We then used MicDrop to test whether individuals possess similar abundances of carbohydrate-degrading gut bacteria, using an approach which had previously not been possible due to throughput limitations of traditional bacterial culture techniques. Single MicDrop experiments allowed us to characterize carbohydrate utilization among dozens of gut bacterial taxa from distinct human stool samples. Our aggregate data across nine healthy stool donors revealed that all of the individuals harbored gut bacterial species capable of degrading common dietary polysaccharides. However, the levels of richness and abundance of polysaccharide-degrading species relative to monosaccharide-consuming taxa differed by up to 2.6-fold and 24.7-fold, respectively. Additionally, our unique dataset suggested that gut bacterial taxa may be broadly categorized by whether they can grow on single or multiple polysaccharides, and we found that this lifestyle trait is correlated with how broadly bacterial taxa can be found across individuals. This demonstration shows that it is feasible to measure the function of hundreds of bacterial taxa across multiple fecal samples from different people, which should in turn enable future efforts to design microbiota-directed therapies and yield new insights into microbiota ecology and evolution. IMPORTANCE Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs.
Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake
Background: Short-chain fatty acids (SCFAs) derived from gut bacteria are associated with protective roles in diseases ranging from obesity to colorectal cancers. Intake of microbially accessible dietary fibers (prebiotics) lead to varying effects on SCFA production in human studies, and gut microbial responses to nutritional interventions vary by individual. It is therefore possible that prebiotic therapies will require customizing to individuals. Results: Here, we explored prebiotic personalization by conducting a three-way crossover study of three prebiotic treatments in healthy adults. We found that within individuals, metabolic responses were correlated across the three prebiotics. Individual identity, rather than prebiotic choice, was also the major determinant of SCFA response. Across individuals, prebiotic response was inversely related to basal fecal SCFA concentration, which, in turn, was associated with habitual fiber intake. Experimental measures of gut microbial SCFA production for each participant also negatively correlated with fiber consumption, supporting a model in which individuals gut microbiota are limited in their overall capacity to produce fecal SCFAs from fiber. Conclusions: Our findings support developing personalized prebiotic regimens that focus on selecting individuals who stand to benefit, and that such individuals are likely to be deficient in fiber intake. Competing Interest Statement The authors have declared no competing interest.
High-throughput isolation and culture of human gut bacteria with droplet microfluidics
Isolation and culture of gut bacteria enable testing for microbial roles in disease and may also lead to novel therapeutics. However, the diversity of human gut microbial communities (microbiota) impedes comprehensive experimental studies of individual bacterial taxa. Here, we combine advances in droplet microfluidics and high-throughput DNA sequencing to develop a platform for isolating and assaying microbiota members in picoliter droplets (MicDrop). MicDrop can be used to create millions of distinct bacterial colonies in a single experiment while using off-the-shelf parts compact enough to fit in an anaerobic chamber. In proof-of-concept experiments, we used the platform to characterize inter-individual metabolic variation among hundreds of polysaccharide-degrading gut bacteria from nine stool donors. We also used MicDrop to test the hypothesis that growth kinetics of individual gut bacterial taxa are associated with long-term community dynamics in an artificial gut. These demonstrations suggest the MicDrop platform could support future diagnostic efforts to personalize microbiota-directed therapies, as well as to provide comprehensive new insights into the ecology of human gut microbiota.
Planning cancer control in Latin America and the Caribbean
Non-communicable diseases, including cancer, are overtaking infectious disease as the leading health-care threat in middle-income and low-income countries. Latin American and Caribbean countries are struggling to respond to increasing morbidity and death from advanced disease. Health ministries and health-care systems in these countries face many challenges caring for patients with advanced cancer: inadequate funding; inequitable distribution of resources and services; inadequate numbers, training, and distribution of health-care personnel and equipment; lack of adequate care for many populations based on socioeconomic, geographic, ethnic, and other factors; and current systems geared toward the needs of wealthy, urban minorities at a cost to the entire population. This burgeoning cancer problem threatens to cause widespread suffering and economic peril to the countries of Latin America. Prompt and deliberate actions must be taken to avoid this scenario. Increasing efforts towards prevention of cancer and avoidance of advanced, stage IV disease will reduce suffering and mortality and will make overall cancer care more affordable. We hope the findings of our Commission and our recommendations will inspire Latin American stakeholders to redouble their efforts to address this increasing cancer burden and to prevent it from worsening and threatening their societies.
A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression
Akkermansia muciniphila , a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities. Transposon mutagenesis identifies Akkermansia muciniphila genes required for growth on mucin and colonization of the intestinal tract.