Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
47 result(s) for "Maycock, Amanda C."
Sort by:
Projected rapid response of stratospheric temperature to stringent climate mitigation
Deep, rapid and sustained reductions in greenhouse gas emissions are required to meet the 2015 Paris Agreement climate target. If the world strengthens efforts toward near-term decarbonisation and undertakes major societal transformation, this will be met with requests from policymakers and the public for evidence that our actions are working and there are demonstrable effects on the climate system. Global surface temperature exhibits large internal variability on interannual to decadal timescales, meaning a reduction in the magnitude of surface warming would not be robustly attributable to climate mitigation for some time. In contrast, global stratospheric temperature trends have much higher signal-to-noise ratios and could offer an early indication of the effects of climate mitigation. Here we examine projected near-term global temperature trends at the surface and in the stratosphere using large ensemble climate models following three future emission scenarios. Under rapid, deep emission cuts following SSP1–1.9, modelled middle and upper stratospheric cooling trends show a detectable weakening within 5 years compared to a scenario approximately representing current climate commitments (SSP2–4.5). Therefore, stratospheric temperature trends could serve as an early indicator to policymakers and the public that climate mitigation is taking effect. Where will the first signals of climate mitigation emerge? This study finds stratospheric cooling trends, a hallmark of climate change, would weaken within 5-10 years of rapid CO2 reductions, offering early signs the climate system is changing course.
Skilful seasonal forecasts of wind energy generation in India during the western summer monsoon
India’s ambitious climate goals include a significant role for wind energy, with plans for a nearly threefold expansion of the existing wind fleet within the next decade. At greater levels of wind deployment, the increased likelihood of extended periods of generation surplus and deficit presents a challenge for managing power supply. It is essential to characterise and predict how this energy source performs within India’s monsoon climate to ensure the reliable operation of the electricity system. This study demonstrates, for the first time, how large-scale atmospheric variables are related to seasonal wind energy generation anomalies in India during boreal summer. Furthermore, an operational seasonal forecasting system is shown to skilfully predict the atmospheric predictor variables at a lead time of 1–4 months, indicating an ability to forecast summer wind energy generation at the country and regional level in India. The explanatory power of the chosen atmospheric predictor variables remains high under the near-term planned expansion of the Indian wind fleet. These findings demonstrate the potential utility of seasonal forecast information for electricity system management in India.
On the Seasonality of the El Niño Teleconnection to the Amundsen Sea Region
The Amundsen Sea low (ASL) is a quasi-stationary low pressure system that affects climate in West Antarctica. Previous studies have shown that El Niño–Southern Oscillation (ENSO) modulates the position and strength of the ASL with the strongest teleconnection found in austral winter despite the amplitude of ENSO events generally being largest in austral autumn/summer. This study investigates the mechanisms behind the seasonality of the El Niño teleconnection to the Amundsen Sea region (ASR) using experiments with the HadGEM3 climate model forced with an idealized fixed El Niño sea surface temperature anomaly present throughout the year. The seasonality of the El Niño–ASR teleconnection is found to originate from seasonal differences in the large-scale zonal winds in the South Pacific sector. In austral winter, the region of strong absolute vorticity near ~30°S associated with the subtropical jet, in combination with the changes to upper-tropospheric divergence due to the El Niño perturbation, acts as an anomalous Rossby wave source that is largely absent in austral summer. Furthermore, in austral summer the poleward propagation of tropically sourced Rossby waves into the ASR is inhibited by the strong polar front jet in the South Pacific sector, which leads to Rossby wave reflection away from the ASR. In austral winter, Rossby waves are able to propagate into the ASR, forming part of the Pacific South America pattern. The lack of the Rossby wave source in the tropical Pacific and the absence of favorable conditions for wave propagation explains the weaker El Niño–ASR teleconnection in austral summer compared to austral winter.
Recent Tropical Expansion
Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.
Large Uncertainties When Diagnosing the “Eddy Feedback Parameter” and Its Role in the Signal‐To‐Noise Paradox
A too‐weak eddy feedback in models has been proposed to explain the signal‐to‐noise paradox in seasonal‐to‐decadal forecasts of the winter Northern Hemisphere. We show that the “eddy feedback parameter” (EFP) used in previous studies is sensitive to sampling and multidecadal variability. When these uncertainties are accounted for, the EFP diagnosed from CMIP6 historical simulations generally falls within the reanalysis uncertainty. We find the EFP is not independent of the sampled North Atlantic Oscillation (NAO). Within the same dataset, a sample containing larger NAO variability will show a larger EFP, suggesting that the link between eddy feedbacks and the signal‐to‐noise paradox could be due to sampling effects with the EFP. An alternative measure of eddy feedback, the barotropic energy generation rate, is less sensitive to sampling errors and delineates CMIP6 models that have weak, strong, or unbiased eddy feedbacks, but shows little relation to NAO variability. Plain Language Summary Model forecasts on seasonal‐to‐decadal timescales have recently been shown to have significant skill in predicting the North Atlantic Oscillation (NAO, a large‐scale pattern of variability). However, these forecasts are undermined by signal‐to‐noise ratios that are lower than expected given the skill, meaning the models are underconfident. This problem is known as the “signal‐to‐noise paradox”. Previous work has shown that models underestimate the strength of feedback from atmospheric eddies onto the midlatitude circulation, but models with a stronger eddy feedback suffer less from the signal‐to‐noise paradox. However, we find that the “eddy feedback parameter” (EFP) used in these studies exhibits large sampling uncertainty that has not previously been taken into account. When accounting for this sampling uncertainty, the EFP in models is generally consistent with reanalysis data. Furthermore, across samples, the EFP correlates with the variability of the NAO, meaning they are not independent, which makes the EFP problematic for understanding the causes of the signal‐to‐noise paradox. Samples with larger NAO variability are diagnosed with a larger EFP, even within the same dataset. An alternative measure of eddy feedback is less sensitive to sampling and better identifies models which have weak, strong, or unbiased eddy feedbacks. Key Points The “eddy feedback parameter” is a highly non‐stationary quantity, making reanalysis and model comparisons problematic on short time periods Sampling uncertainty in the eddy feedback parameter from reanalysis data is comparable to the intermodel spread Barotropic energy generation rate is a more stable quantity, but does not explain model spread in North Atlantic climate variability
Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions
Severe cold air outbreaks have significant impacts on human health, energy use, agriculture, and transportation. Anomalous behavior of the Arctic stratospheric polar vortex provides an important source of subseasonal-to-seasonal predictability of Northern Hemisphere cold air outbreaks. Here, through reanalysis data for the period 1958–2019 and climate model simulations for preindustrial conditions, we show that weak stratospheric polar vortex conditions increase the risk of severe cold air outbreaks in mid-latitude East Asia by 100%, in contrast to only 40% for moderate cold air outbreaks. Such a disproportionate increase is also found in Europe, with an elevated risk persisting more than three weeks. By analysing the stream of polar cold air mass, we show that the polar vortex affects severe cold air outbreaks by modifying the inter-hemispheric transport of cold air mass. Using a novel method to assess Granger causality, we show that the polar vortex provides predictive information regarding severe cold air outbreaks over multiple regions in the Northern Hemisphere, which may help with mitigating their impact.
On the Linearity of the Stratospheric and Euro-Atlantic Sector Response to ENSO
The dependence of the winter stratospheric and Euro-Atlantic climate response on ENSO amplitude is investigated using the HadGEM3 model. Experiments are performed with imposed east Pacific sea surface temperature perturbations corresponding to Niño-3.4 anomalies of ±0.75, 1.5, 2.25, and 3.0 K. In the North Pacific, El Niño (EN) deepens and shifts the Aleutian low eastward, while the equivalent magnitude La Niña (LN) perturbations drive anomalies of opposite sign that are around 4 times weaker. The muted North Pacific response to LN can be traced back to the weaker response of tropical convection and the associated anomalous Rossby wave source. The EN perturbations weaken the Arctic polar vortex, with the winter mean zonal mean zonal wind at 60°N and 10 hPa decreasing approximately linearly with Niño-3.4 anomaly by around −3.6m s−2 K−1. For the strongest EN case (+3K), the frequency of sudden stratospheric warmings (SSWs) increases by ~60% compared to the control experiment. Hence the results do not support a saturation of the stratospheric pathway for strong EN as suggested in previous literature. The equivalent amplitude LN perturbations cause a weak strengthening of the polar vortex and no substantial change in SSW frequency, in contrast to some reanalysis-based studies. EN induces a negative North Atlantic Oscillation (NAO) index throughout boreal winter, which increases approximately linearly with the Niño-3.4 anomaly by around −0.6 standard deviations K−1. Only the response to the strongest LN perturbations projects onto a weak positive NAO in November, suggesting that the mechanism for the Euro-Atlantic response to LN may be distinct from EN.
The role of repowering India’s ageing wind farms in achieving net-zero ambitions
India’s ambitious net-zero climate goals include plans for a four-fold increase in current levels of wind energy generation by 2030. Many existing wind farms in India occupy sites with the best wind resources nationally but use older, smaller turbines that achieve lower capacity factors compared to modern turbine designs. A strategy of replacing existing wind turbines with state-of-the-art models (termed repowering) could boost capacity factors and ensure maximal use of available wind resources. However, a nationwide assessment of the potential wind generation increases resulting from repowering is currently lacking for India. Here, we present the first validated synthetic wind generation dataset for India based on reanalysis data and show that full repowering of the existing fleet of wind turbines could boost capacity factors by 82% nationwide (from 0.19 to 0.35). Our assessment of attainable capacity factors under full repowering exceeds equivalent estimates within the National Electricity Plan of India and national decarbonisation pathways compiled by the Intergovernmental Panel on Climate Change (IPCC), suggesting less total installed capacity is required to achieve specific generation outcomes than previously estimated. Ongoing technological progress, leading to increased turbine dimensions, will drive capacity factors beyond the levels estimated here, which could further add to the generation benefits of repowering. Yet, despite the higher average output from a repowered fleet of wind generators, substantial variability in generation across timescales persists, highlighting the increasing need for power system flexibility within a decarbonised energy system.
A Regime Perspective on the North Atlantic Eddy-Driven Jet Response to Sudden Stratospheric Warmings
Changes to the preferred states, or regime behavior, of the North Atlantic eddy-driven jet (EDJ) following a major sudden stratospheric warming (SSW) is examined using a large ensemble experiment from the Canadian Middle Atmosphere Model in which the stratosphere is nudged toward an SSW. In the 3 months following the SSW (January–March), the North Atlantic EDJ shifts equatorward by ∼3°, on average; this arises from an increased occurrence of the EDJ’s south regime and reductions in its north and central regimes. Qualitatively similar behavior is shown in a reanalysis dataset. We show that under SSW conditions the south regime becomes more persistent and that this can explain the overall increase in the EDJ latitude decorrelation time scale. A cluster analysis reveals that, following the SSW, the south EDJ regime is characterized by weaker low-level baroclinicity and eddy heat fluxes in the North Atlantic Ocean. We hypothesize, therefore, that the increased persistence of the south regime is related to the weaker baroclinicity leading to slower growth rates of the unstable modes and hence a slower buildup of eddy heat flux, which has been shown to precede EDJ transitions. In the North Atlantic sector, the surface response to the SSW projects onto a negative North Atlantic Oscillation (NAO) pattern, with almost no change in the east Atlantic (EA) pattern. This behavior appears to be distinct from the modeled intrinsic variability in the EDJ, where the jet latitude index captures variations in both the NAO and EA patterns. The results offer new insight into the mechanisms for stratosphere–troposphere coupling following SSWs.
Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100
A stratosphere-resolving configuration of the Met Office's Unified Model (UM) with the United Kingdom Chemistry and Aerosols (UKCA) scheme is used to investigate the atmospheric response to changes in (a) greenhouse gases and climate, (b) ozone-depleting substances (ODSs) and (c) non-methane ozone precursor emissions. A suite of time-slice experiments show the separate, as well as pairwise, impacts of these perturbations between the years 2000 and 2100. Sensitivity to uncertainties in future greenhouse gases and aerosols is explored through the use of the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The results highlight an important role for the stratosphere in determining the annual mean tropospheric ozone response, primarily through stratosphere–troposphere exchange (STE) of ozone. Under both climate change and reductions in ODSs, increases in STE offset decreases in net chemical production and act to increase the tropospheric ozone burden. This opposes the effects of projected decreases in ozone precursors through measures to improve air quality, which act to reduce the ozone burden. The global tropospheric lifetime of ozone (τO3) does not change significantly under climate change at RCP4.5, but it decreases at RCP8.5. This opposes the increases in τO3 simulated under reductions in ODSs and ozone precursor emissions. The additivity of the changes in ozone is examined by comparing the sum of the responses in the single-forcing experiments to those from equivalent combined-forcing experiments. Whilst the ozone responses to most forcing combinations are found to be approximately additive, non-additive changes are found in both the stratosphere and troposphere when a large climate forcing (RCP8.5) is combined with the effects of ODSs.