Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
4
result(s) for
"Mazzariello, Arianna"
Sort by:
A Synthetic Aperture Radar-Based Robust Satellite Technique (RST) for Timely Mapping of Floods
2024
Satellite data have been widely utilized for flood detection and mapping tasks, and in recent years, there has been a growing interest in using Synthetic Aperture Radar (SAR) data due to the increased availability of recent missions with enhanced temporal resolution. This capability, when combined with the inherent advantages of SAR technology over optical sensors, such as spatial resolution and independence from weather conditions, allows for timely and accurate information on flood event dynamics. In this study, we present an innovative automated approach, SAR-RST-FLOOD, for mapping flooded areas using SAR data. Based on a multi-temporal analysis of Sentinel 1 data, such an approach would allow for robust and automatic identification of flooded areas. To assess its reliability and accuracy, we analyzed five case studies in areas where floods caused significant damage. Performance metrics, such as overall (OA), user (UA), and producer (PA) accuracy, as well as the Kappa index (K), were used to evaluate the methodology by considering several reference flood maps. The results demonstrate a user accuracy exceeding 0.78 for each test map when compared to the observed flood data. Additionally, the overall accuracy values surpassed 0.96, and the kappa index values exceeded 0.78 when compared to the mapping processes from observed data or other reference datasets from the Copernicus Emergency Management System. Considering these results and the fact that the proposed approach has been implemented within the Google Earth Engine framework, its potential for global-scale applications is evident.
Journal Article
How Can Seasonality Influence the Performance of Recent Microwave Satellite Soil Moisture Products?
by
Lacava, Teodosio
,
Manfreda, Salvatore
,
Adamowski, Jan
in
ALICE index
,
Anomalies
,
Climate change
2024
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and soil properties. When long-term analysis is performed, these discrepancies are mitigated by the contribution of SM seasonality and are only evident when high-frequency variations (i.e., signal anomalies) are investigated. This study sought to examine the responsiveness of SM to seasonal variations in terrestrial ecoregions located in areas covered by the in situ Romanian Soil Moisture Network (RSMN). To achieve this aim, several remote sensing-derived retrievals were considered: (i) NASA’s Soil Moisture Active and Passive (SMAP) L4 V5 model assimilated product data; (ii) the European Space Agency’s Soil Moisture and Ocean Salinity INRA–CESBIO (SMOS-IC) V2.0 data; (iii) time-series data extracted from the H115 and H116 SM products, which are derived from the analysis of Advanced Scatterometer (ASCAT) data acquired via MetOp satellites; (iv) Copernicus Global Land Service SSM 1 km data; and (v) the “combined” European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM) product v06.1. An initial assessment of the performance of these products was conducted by checking the anomaly of long-term fluctuations, quantified using the Absolute Variation of Local Change of Environment (ALICE) index, within a time frame spanning 2015 to 2020. These correlations were then compared with those based on raw data and anomalies computed using a moving window of 35 days. Prominent correlations were observed with the SMAP L4 dataset and across all ecoregions, and the Balkan mixed forests (646) exhibited strong concordance regardless of the satellite source (with a correlation coefficient RALICE > 0.5). In contrast, neither the Central European mixed forests (No. 654) nor the Pontic steppe (No. 735) were adequately characterized by any satellite dataset (RALICE < 0.5). Subsequently, the phenological seasonality and dynamic behavior of SM were computed to investigate the effects of the wetting and drying processes. Notably, the Central European mixed forests (654) underwent an extended dry phase (with an extremely low p-value of 2.20 × 10−16) during both the growth and dormancy phases. This finding explains why the RSMN showcases divergent behavior and underscores why no satellite dataset can effectively capture the complexities of the ecoregions covered by this in situ SM network.
Journal Article
Study on 2007–2021 Drought Trends in Basilicata Region Based on the AMSU-Based Soil Wetness Index
by
Lacava, Teodosio
,
Albano, Raffaele
,
Lahsaini, Meriam
in
Accuracy
,
advanced microwave sounding unit
,
Advanced SCATterometer
2025
Soil moisture (SM) plays a fundamental role in the water cycle and is an important variable for all processes occurring at the lithosphere–atmosphere interface, which are strongly affected by climate change. Among the different fields of application, accurate SM measurements are becoming more relevant for all studies related to extreme event (e.g., floods, droughts, and landslides) mitigation and assessment. In this study, data acquired by the advanced microwave sounding unit (AMSU) onboard the European Meteorological Operational Satellite Program (MetOP) satellites were used for the first time to extract information on the variability of SM by implementing the original soil wetness index (SWI). Long-term monthly SWI time series collected for the Basilicata region (southern Italy) were analyzed for drought assessment during the period 2007–2021. The accuracy of the SWI product was tested through a comparison with SM products derived by the Advanced SCATterometer (ASCAT) over the 2013–2016 period, while the Standardized Precipitation-Evapotranspiration Index (SPEI) was used to assess the relevance of the long-term achievements in terms of drought analysis. The results indicate a satisfactory accuracy of the SWI, with the mean correlation coefficient values with ASCAT higher than 0.7 and a mean normalized root mean square error less than 0.155. A negative trend in SWI during the 15-year period was found using both the original and deseasonalized series (linear and Sen’s slope ~−0.00525), confirmed by SPEI (linear and Sen’s slope ~−0.00293), suggesting the occurrence of a marginal long-term dry phase in the region. Although further investigations are needed to better assess the intensity and main causes of the phenomena, this result indicates the contribution that satellite data/products can offer in supporting drought assessment.
Journal Article
Comparing Three Machine Learning Techniques for Building Extraction from a Digital Surface Model
by
Albano, Raffaele
,
Mazzariello, Arianna
,
Notarangelo, Nicla Maria
in
Algorithms
,
automated building extraction
,
Automation
2021
Automatic building extraction from high-resolution remotely sensed data is a major area of interest for an extensive range of fields (e.g., urban planning, environmental risk management) but challenging due to urban morphology complexity. Among the different methods proposed, the approaches based on supervised machine learning (ML) achieve the best results. This paper aims to investigate building footprint extraction using only high-resolution raster digital surface model (DSM) data by comparing the performance of three different popular supervised ML models on a benchmark dataset. The first two methods rely on a histogram of oriented gradients (HOG) feature descriptor and a classical ML (support vector machine (SVM)) or a shallow neural network (extreme learning machine (ELM)) classifier, and the third model is a fully convolutional network (FCN) based on deep learning with transfer learning. Used data were obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and cover the urban areas of Vaihingen an der Enz, Potsdam, and Toronto. The results indicated that performances of models based on shallow ML (feature extraction and classifier training) are affected by the urban context investigated (F1 scores from 0.49 to 0.81), whereas the FCN-based model proved to be the most robust and best-performing method for building extraction from a high-resolution raster DSM (F1 scores from 0.80 to 0.86).
Journal Article