Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
112 result(s) for "McAllister, Liam"
Sort by:
The Kreuzer-Skarke axiverse
A bstract We study the topological properties of Calabi-Yau threefold hypersurfaces at large h 1 , 1 . We obtain two million threefolds X by triangulating polytopes from the Kreuzer-Skarke list, including all polytopes with 240 ≤ h 1 , 1 ≤ 491. We show that the Kähler cone of X is very narrow at large h 1 , 1 , and as a consequence, control of the α′ expansion in string compactifications on X is correlated with the presence of ultralight axions. If every effective curve has volume ≥ 1 in string units, then the typical volumes of irreducible effective curves and divisors, and of X itself, scale as ( h 1 , 1 ) p , with 3 ≲ p ≲ 7 depending on the type of cycle in question. Instantons from branes wrapping these cycles are thus highly suppressed.
PQ axiverse
A bstract We show that the strong CP problem is solved in a large class of compactifications of string theory. The Peccei-Quinn mechanism solves the strong CP problem if the CP-breaking effects of the ultraviolet completion of gravity and of QCD are small compared to the CP-preserving axion potential generated by low-energy QCD instantons. We characterize both classes of effects. To understand quantum gravitational effects, we consider an ensemble of flux compactifications of type IIB string theory on orientifolds of Calabi-Yau hypersurfaces in the geometric regime, taking a simple model of QCD on D7-branes. We show that the D-brane instanton contribution to the neutron electric dipole moment falls exponentially in N 4 , with N the number of axions. In particular, this contribution is negligible in all models in our ensemble with N > 17. We interpret this result as a consequence of large N effects in the geometry that create hierarchies in instanton actions and also suppress the ultraviolet cutoff. We also compute the CP breaking due to high-energy instantons in QCD. In the absence of vectorlike pairs, we find contributions to the neutron electric dipole moment that are not excluded, but that could be accessible to future experiments if the scale of supersymmetry breaking is sufficiently low. The existence of vectorlike pairs can lead to a larger dipole moment. Finally, we show that a significant fraction of models are allowed by standard cosmological and astrophysical constraints.
Moduli space reconstruction and Weak Gravity
A bstract We present a method to construct the extended Kähler cone of any Calabi-Yau threefold by using Gopakumar-Vafa invariants to identify all geometric phases that are related by flops or Weyl reflections. In this way we obtain the Kähler moduli spaces of all favorable Calabi-Yau threefold hypersurfaces with h 1 , 1 ≤ 4, including toric and non-toric phases. In this setting we perform an explicit test of the Weak Gravity Conjecture by using the Gopakumar-Vafa invariants to count BPS states. All of our examples satisfy the tower/sublattice WGC, and in fact they even satisfy the stronger lattice WGC.
Small cosmological constants in string theory
A bstract We construct supersymmetric AdS 4 vacua of type IIB string theory in compactifications on orientifolds of Calabi-Yau threefold hypersurfaces. We first find explicit orientifolds and quantized fluxes for which the superpotential takes the form proposed by Kachru, Kallosh, Linde, and Trivedi. Given very mild assumptions on the numerical values of the Pfaffians, these compactifications admit vacua in which all moduli are stabilized at weak string coupling. By computing high-degree Gopakumar-Vafa invariants we give strong evidence that the α ′ expansion is likewise well-controlled. We find extremely small cosmological constants, with magnitude < 10 − 123 in Planck units. The compactifications are large, but not exponentially so, and hence these vacua manifest hierarchical scale-separation, with the AdS length exceeding the Kaluza-Klein length by a factor of a googol.
Planckian axions and the Weak Gravity Conjecture
A bstract Several recent works [1-3] have claimed that the Weak Gravity Conjecture (WGC) excludes super-Planckian displacements of axion fields, and hence large-field axion inflation, in the absence of monodromy. We argue that in theories with N ≫ 1 axions, super-Planckian axion diameters D are readily allowed by the WGC. We clarify the non-trivial relationship between the kinetic matrix K — unambiguously defined by its form in a Minkowski-reduced basis — and the diameter of the axion fundamental domain, emphasizing that in general the diameter is not solely determined by the eigenvalues f 1 2  ≤ ⋅ ⋅ ⋅ ≤  f N 2 of K : the orientations of the eigenvectors with respect to the identifications imposed by instantons must be incorporated. In particular, even if one were to impose the condition f N < M pl , this would imply neither D < M pl nor D < N M pl . We then estimate the actions of instantons that fulfill the WGC. The leading instanton action is bounded from below by S ≥ S M pl / f N , with S a fixed constant, but in the universal limit S ≳ S N M pl / f N . Thus, having f N > M pl does not immediately imply the existence of unsuppressed higher harmonic contributions to the potential. Finally, we argue that in effective axion-gravity theories, the zero-form version of the WGC can be satisfied by gravitational instantons that make negligible contributions to the potential.
de Sitter vacua from ten dimensions
A bstract We analyze the de Sitter construction of [1] using ten-dimensional supergravity, finding exact agreement with the four-dimensional effective theory. Starting from the fermionic couplings in the D7-brane action, we derive the ten-dimensional stress-energy due to gaugino condensation on D7-branes. We demonstrate that upon including this stress-energy, as well as that due to anti-D3-branes, the ten-dimensional equations of motion require the four-dimensional curvature to take precisely the value determined by the four-dimensional effective theory of [1].
Monodromy charge in D7-brane inflation
A bstract In axion monodromy inflation, traversing N axion periods corresponds to discharging N units of a quantized charge. In certain models with moving D7-branes, such as Higgs-otic inflation, this monodromy charge is D3-brane charge induced on the D7-branes. The stress-energy of the induced charge affects the internal space, changing the inflaton potential and potentially limiting the field range. We compute the backreaction of induced D3-brane charge in Higgs-otic inflation. The effect on the nonperturbative superpotential is dramatic even for N = 1, and may preclude large-field inflation in this model in the absence of a mechanism to control the backreaction.
Superpotentials from singular divisors
A bstract We study Euclidean D3-branes wrapping divisors D in Calabi-Yau orientifold compactifications of type IIB string theory. Witten’s counting of fermion zero modes in terms of the cohomology of the structure sheaf O D applies when D is smooth, but we argue that effective divisors of Calabi-Yau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf O D ¯ of the normalization D ¯ of D . We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, h + • O D ¯ = 1 0 0 and h − • O D ¯ = 0 0 0 give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infinite-order monodromy groups Γ. We use the action of Γ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strong-weak coupling dualities involving inversion of divisor volumes.
Minimal surfaces and weak gravity
A bstract We show that the Weak Gravity Conjecture (WGC) implies a nontrivial upper bound on the volumes of the minimal-volume cycles in certain homology classes that admit no calibrated representatives. In compactification of type IIB string theory on an orientifold X of a Calabi-Yau threefold, we consider a homology class [Σ] ∈ H 4 ( X, ℝ ) represented by a union Σ ∪ of holomorphic and antiholomorphic cycles. The instanton form of the WGC applied to the axion charge [Σ] implies an upper bound on the action of a non-BPS Euclidean D3-brane wrapping the minimal-volume representative Σ min of [Σ]. We give an explicit example of an orientifold X of a hypersurface in a toric variety, and a hyperplane H ⊂ H 4 ( X, ℝ ), such that for any [Σ] ∈ H that satisfies the WGC, the minimal volume obeys Vol (Σ min ) ≪ Vol(Σ ∪ ): the holomorphic and antiholomorphic components recombine to form a much smaller cycle. In particular, the sub-Lattice WGC applied to X implies large recombination, no matter how sparse the sublattice. Non-BPS instantons wrapping Σ min are then more important than would be predicted from a study of BPS instantons wrapping the separate components of Σ ∪ . Our analysis hinges on a novel computation of effective divisors in X that are not inherited from effective divisors of the toric variety.
Runaway relaxion monodromy
A bstract We examine the relaxion mechanism in string theory. An essential feature is that an axion winds over N ≫ 1 fundamental periods. In string theory realizations via axion monodromy, this winding number corresponds to a physical charge carried by branes or fluxes. We show that — in the context of NS5-brane axion monodromy — this charge backreacts on the compact space, ruining the structure of the relaxion action. In particular, the barriers generated by strong gauge dynamics have height ∝ e − N , so the relaxion does not stop when the Higgs acquires a vev. Backreaction of monodromy charge can therefore spoil the relaxion mechanism. We comment on the limitations of technical naturalness arguments in this context.