Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
87
result(s) for
"McClean, Phillip"
Sort by:
Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces
by
Mamidi, Sujan
,
McClean, Phillip E.
,
Acevedo, Maricelis
in
Analysis
,
Association analysis
,
Basidiomycota - physiology
2015
Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.
Journal Article
Genome-Wide Association Studies Identifies Seven Major Regions Responsible for Iron Deficiency Chlorosis in Soybean (Glycine max)
by
Lee, Rian K.
,
Mamidi, Sujan
,
McClean, Phillip E.
in
Alleles
,
Arabidopsis
,
Arabidopsis thaliana
2014
Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection.
Journal Article
A reference genome for common bean and genome-wide analysis of dual domestications
2014
Scott Jackson, Jeremy Schmutz, Phillip McClean and colleagues report the genome sequence of the common bean (
Phaseolus vulgaris
) and resequenced wild individuals and landraces from Mesoamerican and Andean gene pools, showing that common bean underwent two independent domestications.
Common bean (
Phaseolus vulgaris
L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.
Journal Article
Computational identification of receptor-like kinases “RLK” and receptor-like proteins “RLP” in legumes
by
Osorno, Juan M.
,
McClean, Phillip E.
,
Restrepo-Montoya, Daniel
in
Analysis
,
Animal Genetics and Genomics
,
Binding sites
2020
Background
In plants, the plasma membrane is enclosed by the cell wall and anchors RLK and RLP proteins, which play a fundamental role in perception of developmental and environmental cues and are crucial in plant development and immunity. These plasma membrane receptors belong to large gene/protein families that are not easily classified computationally. This detailed analysis of these plasma membrane proteins brings a new source of information to the legume genetic, physiology and breeding research communities.
Results
A computational approach to identify and classify RLK and RLP proteins is presented. The strategy was evaluated using experimentally-validated RLK and RLP proteins and was determined to have a sensitivity of over 0.85, a specificity of 1.00, and a Matthews correlation coefficient of 0.91. The computational approach can be used to develop a detailed catalog of plasma membrane receptors (by type and domains) in several legume/crop species. The exclusive domains identified in legumes for RLKs are WaaY, APH Pkinase_C, LRR_2, and EGF, and for RLP are L-lectin LPRY and PAN_4. The RLK-nonRD and RLCK subclasses are also discovered by the methodology. In both classes, less than 20% of the total RLK predicted for each species belong to this class. Among the 10-species evaluated ~ 40% of the proteins in the kinome are RLKs. The exclusive legume domain combinations identified are B-Lectin/PR5K domains in
G. max
,
M. truncatula
,
V. angularis
, and
V. unguiculata
and a three-domain combination B-lectin/S-locus/WAK in
C. cajan
,
M. truncatula
,
P. vulgaris
,
V. angularis
. and
V. unguiculata
.
Conclusions
The analysis suggests that about 2% of the proteins of each genome belong to the RLK family and less than 1% belong to RLP family. Domain diversity combinations are greater for RLKs compared with the RLP proteins and LRR domains, and the dual domain combination LRR/Malectin were the most frequent domain for both groups of plasma membrane receptors among legume and non-legume species. Legumes exclusively show Pkinase extracellular domains, and atypical domain combinations in RLK and RLP compared with the non-legumes evaluated. The computational logic approach is statistically well supported and can be used with the proteomes of other plant species.
Journal Article
Coding Mutations in Vacuolar Protein-Sorting 4 AAA+ ATPase Endosomal Sorting Complexes Required for Transport Protein Homologs Underlie bc-2 and New bc-4 Gene Conferring Resistance to Bean Common Mosaic Virus in Common Bean
by
Soler-Garzón, Alvaro
,
McClean, Phillip E.
,
Miklas, Phillip N.
in
Adenosine triphosphatase
,
Alleles
,
Amino acid substitution
2021
Bean common mosaic virus
(BCMV) is a major disease in common bean (
Phaseolus vulgaris
L.). Host plant resistance is the most effective strategy to minimize crop damage against BCMV and the related
Bean common mosaic necrosis virus
(BCMNV). To facilitate breeding for resistance, we sought to identify candidate genes and develop markers for the
bc-2
gene and the unknown gene with which it interacts. Genome-wide association study (GWAS) of the Durango Diversity Panel (DDP) identified a peak region for
bc-2
on chromosome Pv11. Haplotype mapping narrowed the
bc-2
genomic interval and identified Phvul.011G092700, a vacuolar protein-sorting 4 (Vps4) AAA+ ATPase endosomal sorting complexes required for transport (ESCRT) protein, as the
bc-2
candidate gene. The race Durango Phvul.011G092700 gene model,
bc-2
[UI
111]
, contains a 10-kb deletion, while the race Mesoamerican
bc-2
[Robust]
consists of a single nucleotide polymorphism (SNP) deletion. Each mutation introduces a premature stop codon, and they exhibit the same interaction with the pathogroups (PGs) tested. Phvul.005G125100, another Vps4 AAA+ ATPase ESCRT protein, was identified as the candidate gene for the new recessive
bc-4
gene, and the recessive allele is likely an amino acid substitution in the microtubule interacting and transport (MIT) domain. The two Vps4 AAA+ ATPase ESCRT proteins exhibit high similarity to the
Zym
Cucsa.385040 candidate gene associated with recessive resistance to
Zucchini yellow mosaic virus
in cucumber.
bc-2
alone has no resistance effect but, when combined with
bc-4
, provides resistance to BCMV (except PG-V) but not BCMNV, and, when combined with
bc-u
d
, provides resistance to BCMV (except BCMV PG-VII) and BCMNV. So instead of different resistance alleles (i.e.,
bc-2
and
bc-2
2
), there is only
bc-2
with a differential reaction based on whether it is combined with
bc-4
or
bc-u
d
, which are tightly linked in repulsion. The new tools and enhanced understanding of this host-virus pathogen interaction will facilitate breeding common beans for resistance to BCMV and BCMNV.
Journal Article
Genome wide association study discovers genomic regions involved in resistance to soybean cyst nematode (Heterodera glycines) in common bean
by
Poromarto, Susilo
,
Osorno, Juan M.
,
McClean, Phillip E.
in
Agricultural production
,
Animals
,
Beans
2019
Common bean (Phaseolus vulgaris L.) is an important high protein crop grown worldwide. North Dakota and Minnesota are the largest producers of common beans in the USA, but crop production is threatened by soybean cyst nematode (SCN; Heterodera glycines Ichinohe) because most current cultivars are susceptible. Greenhouse screening data using SCN HG type 0 from 317 plant introductions (PI's) from the USDA core collection was used to conduct a genome wide association study (GWAS). These lines were divided into two subpopulations based on principal component analysis (Middle American vs. Andean). Phenotypic results based on the female index showed that accessions could be classified as highly resistant (21% and 27%), moderately resistant (51% and 48%), moderately susceptible (27% and 22%) and highly susceptible (1% and 3%) for Middle American and Andean gene pools, respectively. Mixed models with two principal components (PCs) and kinship matrix for Middle American genotypes and Andean genotypes were used in the GWAS analysis using 3,985 and 4,811 single nucleotide polymorphic (SNP) markers, respectively which were evenly distributed across all 11 chromosomes. Significant peaks on Pv07, and Pv11 in Middle American and on Pv07, Pv08, Pv09 and Pv11 in Andean group were found to be associated with SCN resistance. Homologs of soybean rhg1, a locus which confers resistance to SCN in soybean, were identified on chromosomes Pv01 and Pv08 in the Middle American and Andean gene pools, respectively. These genomic regions may be the key to develop SCN-resistant common bean cultivars.
Journal Article
Seed coat transcriptomic profiling of 5-593, a genotype important for genetic studies of seed coat color and patterning in common bean (Phaseolus vulgaris L.)
by
Osborne, Caroline
,
Lee, Rian
,
McClean, Phillip E.
in
Agricultural research
,
Agriculture
,
Analysis
2025
Common bean (
Phaseolus vulgaris
L.) market classes have distinct seed coat colors, which are directly related to the diverse flavonoids found in the mature seed coat. To understand and elucidate the molecular mechanisms underlying the regulation of seed coat color, RNA-Seq data was collected from the black bean 5-593 and used for a differential gene expression and enrichment analysis from four different seed coat color development stages. 5-593 carries dominant alleles for 10 of the 11 major genes that control seed coat color and expression and has historically been used to develop introgression lines used for seed coat genetic analysis. Pairwise comparison among the four stages identified 6,294 differentially expressed genes (DEGs) varying from 508 to 5,780 DEGs depending on the compared stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal pathways expressed during bean seed coat pigment development. Transcriptome analysis suggested that most structural genes for flavonoid biosynthesis and some potential regulatory genes were significantly differentially expressed. Further studies detected 29 DEGs as important candidate genes governing the key enzymatic flavonoid biosynthetic pathways for common bean seed coat color development. Additionally, four gene models, Pv5-593.02G016100, 593.02G078700, Pv5-593.02G090900, and Pv5-593.06G121300, encode MYB-like transcription factor family protein were identified as strong candidate regulatory genes in anthocyanin biosynthesis which could regulate the expression levels of some important structural genes in flavonoid biosynthesis pathway. These findings provide a framework to draw new insights into the molecular networks underlying common bean seed coat pigment development.
Journal Article
The tepary bean genome provides insight into evolution and domestication under heat stress
2021
Tepary bean (Phaseolus acutifolis A. Gray), native to the Sonoran Desert, is highly adapted to heat and drought. It is a sister species of common bean (Phaseolus vulgaris L.), the most important legume protein source for direct human consumption, and whose production is threatened by climate change. Here, we report on the tepary genome including exploration of possible mechanisms for resilience to moderate heat stress and a reduced disease resistance gene repertoire, consistent with adaptation to arid and hot environments. Extensive collinearity and shared gene content among these Phaseolus species will facilitate engineering climate adaptation in common bean, a key food security crop, and accelerate tepary bean improvement.
Journal Article
Artificial selection for determinate growth habit in soybean
2010
Determinacy is an agronomically important trait associated with the domestication in soybean (Glycine max). Most soybean cultivars are classifiable into indeterminate and determinate growth habit, whereas Glycine soja, the wild progenitor of soybean, is indeterminate. Indeterminate (Dt1/Dt1) and determinate (dt1/dt1) genotypes, when mated, produce progeny that segregate in a monogenic pattern. Here, we show evidence that Dt1 is a homolog (designated as GmTfl1) of Arabidopsis terminal flower 1 (TFL1), a regulatory gene encoding a signaling protein of shoot meristems. The transition from indeterminate to determinate phenotypes in soybean is associated with independent human selections of four distinct single-nucleotide substitutions in the GmTfl1 gene, each of which led to a single amino acid change. Genetic diversity of a minicore collection of Chinese soybean landraces assessed by simple sequence repeat (SSR) markers and allelic variation at the GmTfl1 locus suggest that human selection for determinacy took place at early stages of landrace radiation. The GmTfl1 allele introduced into a determinate-type (tfl1/tfl1) Arabidopsis mutants fully restored the wild-type (TFL1/TFL1) phenotype, but the Gmtfl1 allele in tfl1/tfl1 mutants did not result in apparent phenotypic change. These observations indicate that GmTfl1 complements the functions of TFL1 in ARABIDOPSIS: However, the GmTfl1 homeolog, despite its more recent divergence from GmTfl1 than from Arabidopsis TFL1, appears to be sub- or neo-functionalized, as revealed by the differential expression of the two genes at multiple plant developmental stages and by allelic analysis at both loci.
Journal Article
Orthology and synteny analysis of receptor-like kinases “RLK” and receptor-like proteins “RLP” in legumes
by
Osorno, Juan M.
,
McClean, Phillip E.
,
Restrepo-Montoya, Daniel
in
Adaptability
,
Analysis
,
Animal Genetics and Genomics
2021
Background
Legume species are an important plant model because of their protein-rich physiology. The adaptability and productivity of legumes are limited by major biotic and abiotic stresses. Responses to these stresses directly involve plasma membrane receptor proteins known as receptor-like kinases and receptor-like proteins. Evaluating the homology relations among RLK and RLP for seven legume species, and exploring their presence among synteny blocks allow an increased understanding of evolutionary relations, physical position, and chromosomal distribution in related species and their shared roles in stress responses.
Results
Typically, a high proportion of RLK and RLP legume proteins belong to orthologous clusters, which is confirmed in this study, where between 66 to 90% of the RLKs and RLPs per legume species were classified in orthologous clusters. One-third of the evaluated syntenic blocks had shared RLK/RLP genes among both legumes and non-legumes. Among the legumes, between 75 and 98% of the RLK/RLP were present in syntenic blocks. The distribution of chromosomal segments between
Phaseolus vulgaris
and
Vigna unguiculata
, two species that diverged ~ 8 mya, were highly similar. Among the RLK/RLP synteny clusters, seven experimentally validated resistance RLK/RLP genes were identified in syntenic blocks. The RLK resistant genes FLS2, BIR2, ERECTA, IOS1, and AtSERK1 from
Arabidopsis
and SLSERK1 from
Solanum lycopersicum
were present in different pairwise syntenic blocks among the legume species. Meanwhile, only the LYM1- RLP resistant gene from
Arabidopsis
shared a syntenic blocks with
Glycine max
.
Conclusions
The orthology analysis of the RLK and RLP suggests a dynamic evolution in the legume family, with between 66 to 85% of RLK and 83 to 88% of RLP belonging to orthologous clusters among the species evaluated. In fact, for the 10-species comparison, a lower number of singleton proteins were reported among RLP compared to RLK, suggesting that RLP positions are more physically conserved compared to RLK. The identification of RLK and RLP genes among the synteny blocks in legumes revealed multiple highly conserved syntenic blocks on multiple chromosomes. Additionally, the analysis suggests that
P. vulgaris
is an appropriate anchor species for comparative genomics among legumes.
Journal Article