Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,129
result(s) for
"McCoy, Michael T."
Sort by:
Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens
by
Subramaniam Jayanthi
,
McCoy, Michael T
,
Ladenheim, Bruce
in
Addictions
,
Amphetamines
,
Argipressin
2018
Methamphetamine (METH) addiction is a biopsychosocial disorder that is accompanied by multiple relapses even after prolonged abstinence, suggesting the possibilities of long-lasting maladaptive epigenetic changes in the brain. Here, we show that METH administration produced time-dependent increases in the expression of corticotropin-releasing hormone (Crh/Crf), arginine vasopressin (Avp), and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) mRNAs in the rat nucleus accumbens (NAc). Chromatin immunoprecipitation (ChIP) assays revealed that METH increased the abundance of phosphorylated CREB (pCREB) at the promoter of Cartpt but not at Avp or Crh DNA sequences. In contrast, METH produced DNA hypomethylation at sites near the Crh transcription start site (TSS) and at intragenic Avp sequences. METH also increased DNA hydroxymethylation at the Crh TSS and at intragenic Avp sites. In addition, METH increased the protein expression of ten-eleven-translocation enzymes that catalyze DNA hydroxymethylation. Importantly, METH increased TET1 binding at the Crh promoter and increased TET3 binding at Avp intragenic regions. We further tested the role of TET enzymes in METH-induced changes in gene expression by using the TET inhibitor, 1,5-isoquinolinediol (IQD), and found that IQD blocked METH-induced increases in Crh and Avp mRNA expression. Together, these results indicate that METH produced changes in neuropeptide transcription by both activation of the cAMP/CREB pathway and stimulation of TET-dependent DNA hydroxymethylation. These results provide molecular evidence for epigenetic controls of METH-induced changes in the expression of neuropeptides.
Journal Article
Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex
by
Ladenheim, Bruce
,
Blackwood, Christopher A.
,
Cadet, Jean Lud
in
Animal behavior
,
Brain
,
c-Fos protein
2020
Opioid use disorder (OUD) is characterized by compulsive drug taking despite adverse life consequences. Here, we sought to identify neurobiological consequences associated with the behavioral effects of contingent footshocks administered after escalation of oxycodone self-administration. To reach these goals, Sprague-Dawley rats were trained to self-administer oxycodone for 4 weeks and were then exposed to contingent electric footshocks. This paradigm helped to dichotomize rats into two distinct behavioral phenotypes: (1) those that reduce lever pressing (shock-sensitive) and (2) others that continue lever pressing (shock-resistant) for oxycodone during contingent punishment. The rats were euthanized at 2-h after the last oxycodone plus footshock session. The dorsal striata and prefrontal cortices were dissected for use in western blot and RT-qPCR analyses. All oxycodone self-administration rats showed significant decreased expression of Mu and Kappa opioid receptor proteins only in the dorsal striatum. However, expression of Delta opioid receptor protein was decreased in both brain regions. RT-qPCR analyses documented significant decreases in the expression of
,
,
,
,
, and
mRNAs in the dorsal striatum (but not in PFC) of the shock-sensitive rats. In the PFC,
expression was reduced in both phenotypes. However,
mRNA expression was increased in the PFC of only shock-resistant rats. These results reveal that, similar to psychostimulants and alcohol, footshocks can dichotomize rats that escalated their intake of oxycodone into two distinct behavioral phenotypes. These animals also show significant differences in the mRNA expression of immediate early genes, mainly, in the dorsal striatum. The increases in PFC
expression in the shock-resistant rats suggest that Egr3 might be involved in the persistence of oxycodone-associated memory under aversive conditions. This punishment-driven model may help to identify neurobiological substrates of persistent oxycodone taking and abstinence in the presence of adverse consequences.
Journal Article
Incubation of Methamphetamine and Palatable Food Craving after Punishment-Induced Abstinence
by
Panlilio, Leigh V
,
McCoy, Michael T
,
Shaham, Yavin
in
Abstinence
,
Animals
,
Biological and medical sciences
2014
In a rat model of drug craving and relapse, cue-induced drug seeking progressively increases after withdrawal from methamphetamine and other drugs, a phenomenon termed 'incubation of drug craving'. However, current experimental procedures used to study incubation of drug craving do not incorporate negative consequences of drug use, which is a common factor promoting abstinence in humans. Here, we studied whether incubation of methamphetamine craving is observed after suppression of drug seeking by adverse consequences (punishment). We trained rats to self-administer methamphetamine or palatable food for 9 h per day for 14 days; reward delivery was paired with a tone-light cue. Subsequently, for one group within each reward type, 50% of the lever-presses were punished by mild footshock for 9-10 days, whereas for the other group lever-presses were not punished. Shock intensity was gradually increased over time. Next, we assessed cue-induced reward seeking in 1-h extinction sessions on withdrawal days 2 and 21. Response-contingent punishment suppressed extended-access methamphetamine or food self-administration; surprisingly, food-trained rats showed greater resistance to punishment than methamphetamine-trained rats. During the relapse tests, both punished and unpunished methamphetamine- and food-trained rats showed significantly higher cue-induced reward seeking on withdrawal day 21 than on day 2. These results demonstrate that incubation of both methamphetamine and food craving occur after punishment-induced suppression of methamphetamine or palatable food self-administration. Our procedure can be used to investigate mechanisms of relapse to drug and palatable food seeking under conditions that more closely approximate the human condition.
Journal Article
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder
by
Jayanthi, Subramaniam
,
Cadet, Jean Lud
,
McCoy, Michael T.
in
Acetylation
,
Amphetamine-Related Disorders - genetics
,
Amphetamines
2021
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Journal Article
Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens
by
Lehrmann, Elin
,
Becker, Kevin G.
,
Martin, Tracey A.
in
Acetylation
,
Acetylation - drug effects
,
Activating Transcription Factor 2 - metabolism
2012
Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further.
Journal Article
Oxycodone self-administration activates the mitogen-activated protein kinase/ mitogen- and stress-activated protein kinase (MAPK-MSK) signaling pathway in the rat dorsal striatum
by
Ladenheim, Bruce
,
Blackwood, Christopher A.
,
Cadet, Jean Lud
in
631/378/340
,
692/699/476
,
692/699/476/5
2021
To identify signaling pathways activated by oxycodone self-administration (SA), Sprague–Dawley rats self-administered oxycodone for 20 days using short—(ShA, 3 h) and long-access (LgA, 9 h) paradigms. Animals were euthanized 2 h after SA cessation and dorsal striata were used in post-mortem molecular analyses. LgA rats escalated their oxycodone intake and separated into lower (LgA-L) or higher (LgA-H) oxycodone takers. LgA-H rats showed increased striatal protein phosphorylation of ERK1/2 and MSK1/2. Histone H3, phosphorylated at serine 10 and acetylated at lysine 14 (H3S10pK14Ac), a MSK1/2 target, showed increased abundance only in LgA-H rats. RT-qPCR analyses revealed increased AMPA receptor subunits,
GluA2
and
GluA3
mRNAs, in the LgA-H rats.
GluA3
, but not
GluA2
, mRNA expression correlated positively with changes in pMSK1/2 and H3S10pK14Ac. These findings suggest that escalated oxycodone SA results in MSK1/2-dependent histone phosphorylation and increases in striatal gene expression. These observations offer potential avenues for interventions against oxycodone addiction.
Journal Article
Pharmacological Actions of Potassium Channel Openers on Voltage-Gated Potassium Channels
by
Ladenheim, Bruce
,
Cadet, Jean Lud
,
McCoy, Michael T.
in
Brain
,
Carrier proteins
,
Decision making
2025
Background/Objectives: Potassium (K+) channels are essential transmembrane proteins that regulate ion flow, playing a critical role in regulating action potentials and neuronal transmission. Although K+ channel openers (agonists, K+ Ag) are widely used in treating neurological and psychiatric disorders, their precise mechanisms of action remain unclear. Our study explored how K+ channel openers might influence the expression of voltage-gated K+ channels (Kv) in rat brain. Methods: Briefly, eight rats per group received intraperitoneal injections of diazoxide (Dia), chlorzoxazone (Chl), or flupirtine (Flu). Two hours post-injection, the prefrontal cortex (PFC), nucleus accumbens (NAc), dorsal striatum (dSTR), dorsal hippocampus (dHIP), and ventral hippocampus (vHIP) were collected for mRNA expression analysis of various Kv. Results: Dia administration altered expression of Kcna6 in the NAc, dSTR, and vHIP, and Kcnq2 in the PFC, dSTR, and dHIP. The mRNA levels of Kcna2 and Kcna3 changed in the NAc, dHIP, and vHIP, while Kcna6 expression increased in the PFC, dHIP, and vHIP of rats treated with Chl. Injection of Flu resulted in altered expression for Kcna1 in the NAc, dSTR, and dHIP; Kcna3 in the PFC, NAc, dHIP, and vHIP; Kcna6 in the dSTR, dHIP, and vHIP; and Kcnq2 and Kcnq3 in the PFC, dHIP, and vHIP. We also found dose-dependent changes. Conclusions: To our knowledge, this is the first study to identify the effects of potassium channel openers on gene expression within the mesocorticolimbic and nigrostriatal dopaminergic systems. These findings reveal a novel molecular mechanism underlying the action of these drugs in the brain. Importantly, our results have broader implications for translational neuroscience, particularly in the context of repurposing FDA-approved drugs, such as diazoxide and chlorzoxazone, for the treatment of neurological disorders.
Journal Article
Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats
by
Cadet, Jean Lud
,
Gerra, Maria Carla
,
Jayanthi, Subramaniam
in
38/61
,
631/378/1788
,
631/378/340
2017
Methamphetamine addiction is mimicked in rats that self-administer the drug. However, these self-administration (SA) models do not include adverse consequences that are necessary to reach a diagnosis of addiction in humans. Herein, we measured genome-wide transcriptional consequences of methamphetamine SA and footshocks in the rat brain. We trained rats to self-administer methamphetamine for 20 days. Thereafter, lever-presses for methamphetamine were punished by mild footshocks for 5 days. Response-contingent punishment significantly reduced methamphetamine taking in some rats (shock-sensitive, SS) but not in others (shock-resistant, SR). Rats also underwent extinction test at one day and 30 days after the last shock session. Rats were euthanized one day after the second extinction test and the nucleus accumbens (NAc) and dorsal striatum were collected to measure gene expression with microarray analysis. In the NAc, there were changes in the expression of 13 genes in the SRvsControl and 9 genes in the SRvsSS comparison. In the striatum, there were 9 (6 up, 3 down) affected genes in the SRvsSS comparison. Among the upregulated genes was oxytocin in the NAc and CARTpt in the striatum of SR rats. These observations support a regional role of neuropeptides in the brain after a long withdrawal interval when animals show incubation of methamphetamine craving.
Journal Article
Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat
2010
Methamphetamine (meth) is an illicit psychostimulant that is abused throughout the world. Repeated passive injections of the drug given in a single day or over a few days cause significant and long-term depletion of dopamine and serotonin in the mammalian brain. Because meth self-administration may better mimic some aspects of human drug-taking behaviors, we examined to what extent this pattern of drug treatment might also result in damage to monoaminergic systems in the brain. Rats were allowed to intravenously self-administer meth (yoked control rats received vehicle) 15 hours per day for 8 days before being euthanized at either 24 hours or at 7 and 14 days after cessation of drug taking. Meth self-administration by the rats was associated with a progressive escalation of daily drug intake to 14 mg/kg per day. Animals that self-administered meth exhibited dose-dependent decreases in striatal dopamine levels during the period of observation. In addition, there were significant reductions in the levels of striatal dopamine transporter and tyrosine hydroxylase proteins. There were also significant decreases in the levels of dopamine, dopamine transporter, and tyrosine hydroxylase in the cortex. In contrast, meth self-administration caused only transient decreases in norepinephrine and serotonin levels in the two brain regions, with these values returning to normal at seven days after cessation of drug taking. Importantly, meth self-administration was associated with significant dose-dependent increases in glial fibrillary acidic protein in both striatum and cortex, with these changes being of greater magnitude in the striatum. These results suggest that meth self-administration by rats is associated with long-term biochemical changes that are reminiscent of those observed in post-mortem brain tissues of chronic meth abusers.
Journal Article
Enhanced Upregulation of CRH mRNA Expression in the Nucleus Accumbens of Male Rats after a Second Injection of Methamphetamine Given Thirty Days Later
by
Lehrmann, Elin
,
Becker, Kevin G.
,
Cadet, Jean Lud
in
Amphetamines
,
Analysis of Variance
,
Animals
2014
Methamphetamine (METH) is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg) on transcriptional effects of a second METH (2.5 mg/kg) injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc) of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS) or METH-challenged (SM); and METH-pretreated followed by saline-challenged (MS) or METH-challenged (MM). Microarray analyses revealed that METH (2.5 mg/kg) produced acute changes (1.8-fold; P<0.01) in the expression of 412 (352 upregulated, 60 down-regulated) transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh), oxytocin (Oxt), and vasopressin (Avp) that were upregulated. Injection of METH (10 mg/kg) altered the expression of 503 (338 upregulated, 165 down-regulated) transcripts measured one month later (MS group). These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated) transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.
Journal Article