Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
122 result(s) for "McCullough, Louise D"
Sort by:
Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area
Sex is increasingly recognized as an important factor in the epidemiology and outcome of many diseases. This also appears to hold for coronavirus disease 2019 (COVID-19). Evidence from China and Europe has suggested that mortality from COVID-19 infection is higher in men than women, but evidence from US populations is lacking. Utilizing data from a large healthcare provider, we determined if males, as compared to females have a higher likelihood of SARS-CoV-2 susceptibility, and if among the hospitalized COVID-19 patients, male sex is independently associated with COVID-19 severity and poor in-hospital outcomes. Using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines, we conducted a cross-sectional analysis of data from a COVID-19 Surveillance and Outcomes Registry (CURATOR). Data were extracted from Electronic Medical Records (EMR). A total of 96,473 individuals tested for SARS-CoV-2 RNA in nasopharyngeal swab specimens via Polymerized Chain Reaction (PCR) tests were included. For hospital-based analyses, all patients admitted during the same time-period were included. Of the 96,473 patients tested, 14,992 (15.6%) tested positive, of whom 4,785 (31.9%) were hospitalized and 452 (9.5%) died. Among all patients tested, men were significantly older. The overall SARS-CoV-2 positivity among all tested individuals was 15.5%, and was higher in males as compared to females 17.0% vs. 14.6% [OR 1.20]. This sex difference held after adjusting for age, race, ethnicity, marital status, insurance type, median income, BMI, smoking and 17 comorbidities included in Charlson Comorbidity Index (CCI) [aOR 1.39]. A higher proportion of males (vs. females) experienced pulmonary (ARDS, hypoxic respiratory failure) and extra-pulmonary (acute renal injury) complications during their hospital course. After adjustment, length of stay (LOS), need for mechanical ventilation, and in-hospital mortality were significantly higher in males as compared to females. In this analysis of a large US cohort, males were more likely to test positive for COVID-19. In hospitalized patients, males were more likely to have complications, require ICU admission and mechanical ventilation, and had higher mortality than females, independent of age. Sex disparities in COVID-19 vulnerability are present, and emphasize the importance of examining sex-disaggregated data to improve our understanding of the biological processes involved to potentially tailor treatment and risk stratify patients.
Age-related immune alterations and cerebrovascular inflammation
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world’s population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Inflammatory responses in hypoxic ischemic encephalopathy
Inflammation plays a critical role in mediating brain injury induced by neonatal hypoxic ischemic encephalopathy (HIE). The mechanisms underlying inflammatory responses to ischemia may be shared by neonatal and adult brains; however, HIE exhibits a unique inflammation phenotype that results from the immaturity of the neonatal immune system. This review will discuss the current knowledge concerning systemic and local inflammatory responses in the acute and subacute stages of HIE. The key components of inflammation, including immune cells, adhesion molecules, cytokines, chemokines and oxidative stress, will be reviewed, and the differences between neonatal and adult inflammatory responses to cerebral ischemic injury will also be discussed.
Revisiting regulatory T cells for stroke therapy
Stroke is a leading cause of death and long-term disability. T cells have been extensively studied for their dual role in regulating immunity and inflammation following stroke. In this issue of the JCI, Cai, Shi, et al. demonstrated that CD8+ regulatory-like T cells (CD8+ TRLs) are one of the earliest lymphocyte subtypes to enter the brain after experimental ischemic stroke. Using a mouse model of stroke and comprehensive experimental approaches, the authors found that CD8+ TRLs reduced both brain damage and functional deficits in both young and aged mice. These unique early responding regulatory T cells may also play a role in a wide array of other T cell-mediated neurological disorders.
Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes
Microglial activation plays a central role in poststroke inflammation and causes secondary neuronal damage; however, it also contributes in debris clearance and chronic recovery. Microglial pro- and antiinflammatory responses (or so-called M1-M2 phenotypes) coexist and antagonize each other throughout the disease progress. As a result of this balance, poststroke immune responses alter stroke outcomes. Our previous study found microglial expression of interferon regulatory factor 5 (IRF5) and IRF4 was related to pro- and antiinflammatory responses, respectively. In the present study, we genetically modified the IRF5 and IRF4 signaling to explore their roles in stroke. Both in vitro and in vivo assays were utilized; IRF5 or IRF4 small interfering RNA (siRNA), lentivirus, and conditional knockout (CKO) techniques were employed to modulate IRF5 or IRF4 expression in microglia. We used a transient middle cerebral artery occlusion model to induce stroke and examined both acute and chronic stroke outcomes. Poststroke inflammation was evaluated with flow cytometry, RT-PCR, MultiPlex, and immunofluorescence staining. An oscillating pattern of the IRF5-IRF4 regulatory axis function was revealed. Down-regulation of IRF5 signaling by siRNA or CKO resulted in increased IRF4 expression, enhanced M2 activation, quenched proinflammatory responses, and improved stroke outcomes, whereas down-regulation of IRF4 led to increased IRF5 expression, enhanced M1 activation, exacerbated proinflammatory responses, and worse functional recovery. Up-regulation of IRF4 or IRF5 by lentivirus induced similar results. We conclude that the IRF5-IRF4 regulatory axis is a key determinant in microglial activation. The IRF5-IRF4 regulatory axis is a potential therapeutic target for neuroinflammation and ischemic stroke.
Middle Cerebral Artery Occlusion Model in Rodents : Methods and Potential Pitfalls
A variety of animal models have been developed for modeling ischemic stroke. The middle cerebral artery occlusion (MCAO) model has been utilized extensively, especially in rodents. While the MCAO model provides stroke researchers with an excellent platform to investigate the disease, controversial or even paradoxical results are occasionally seen in the literature utilizing this model. Various factors exert important effects on the outcome in this stroke model, including the age and sex of the animal examined. This paper discusses emerging information on the effects of age and sex on ischemic outcomes after MCAO, with an emphasis on mouse models of stroke.
Effects of AMP-Activated Protein Kinase in Cerebral Ischemia
AMP-activated protein kinase (AMPK) is a serine threonine kinase that is highly conserved through evolution. AMPK is found in most mammalian tissues including the brain. As a key metabolic and stress sensor/effector, AMPK is activated under conditions of nutrient deprivation, vigorous exercise, or heat shock. However, it is becoming increasingly recognized that changes in AMPK activation not only signal unmet metabolic needs, but also are involved in sensing and responding to ‘cell stress’, including ischemia. The downstream effect of AMPK activation is dependent on many factors, including the severity of the stressor as well as the tissue examined. This review discusses recent in vitro and in vivo studies performed in the brain/neuronal cells and vasculature that have contributed to our understanding of AMPK in stroke. Recent data on the potential role of AMPK in angiogenesis and neurogenesis and the interaction of AMPK with 3-hydroxy-3-methy-glutaryl-CoA reductase inhibitors (statins) agents are highlighted. The interaction between AMPK and nitric oxide signaling is also discussed.
The Neurological Manifestations of Post-Acute Sequelae of SARS-CoV-2 Infection
Purpose of ReviewCoronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health challenge. This review aims to summarize the incidence, risk factors, possible pathophysiology, and proposed management of neurological manifestations of post-acute sequelae of SARS-CoV-2 infection (PASC) or neuro-PASC based on the published literature.Recent FindingsThe National Institutes of Health has noted that PASC is a multi-organ disorder ranging from mild symptoms to an incapacitating state that can last for weeks or longer following recovery from initial infection with SARS-CoV-2. Various pathophysiological mechanisms have been proposed as the culprit for the development of PASC. These include, but are not limited to, direct or indirect invasion of the virus into the brain, immune dysregulation, hormonal disturbances, elevated cytokine levels due to immune reaction leading to chronic inflammation, direct tissue damage to other organs, and persistent low-grade infection. A multidisciplinary approach for the treatment of neuro-PASC will be required to diagnose and address these symptoms. Tailored rehabilitation and novel cognitive therapy protocols are as important as pharmacological treatments to treat neuro-PASC effectively.SummaryWith recognizing the growing numbers of COVID-19 patients suffering from neuro-PASC, there is an urgent need to identify affected individuals early to provide the most appropriate and efficient treatments. Awareness among the general population and health care professionals about PASC is rising, and more efforts are needed to understand and treat this new emerging challenge. In this review, we summarize the relevant scientific literature about neuro-PASC.
TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage
Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-β1 pathway activation during the resolution phase. We then confirmed that TGF-β1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-β1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-β1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-β1 in functional recovery from ICH. Taken together, our data show that TGF-β1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-β1 may be a therapeutic target for acute brain injury.
Functional differences between microglia and monocytes after ischemic stroke
Background The brain’s initial innate response to stroke is primarily mediated by microglia, the resident macrophage of the CNS. However, as early as 4 h after stroke, the blood–brain barrier is compromised and monocyte infiltration occurs. The lack of discriminating markers between these two myeloid populations has led many studies to generate conclusions based on the grouping of these two populations. A growing body of evidence now supports the distinct roles played by microglia and monocytes in many disease models. Methods Using a flow cytometry approach, combined with ex-vivo functional assays, we were able to distinguish microglia from monocytes using the relative expression of CD45 and assess the function of each cell type following stroke over the course of 7 days. Results We found that at 72 h after a 90-min middle cerebral artery occlusion (MCAO), microglia populations decrease whereas monocytes significantly increase in the stroke brain compared to sham. After stroke, BRDU incorporation into monocytes in the bone marrow increased. After recruitment to the ischemic brain, these monocytes accounted for nearly all BRDU-positive macrophages. Inflammatory activity peaked at 72 h. Microglia produced relatively higher reactive oxygen species and TNF, whereas monocytes were the predominant IL-1β producer. Although microglia showed enhanced phagocytic activity after stroke, monocytes had significantly higher phagocytic capacity at 72 h. Interestingly, we found a positive correlation between TNF expression levels and phagocytic activity of microglia after stroke. Conclusions In summary, the resident microglia population is vulnerable to the effects of severe ischemia, show compromised cell cycle progression, and adopt a largely pro-inflammatory phenotype after stroke. Infiltrating monocytes are primarily involved with early debris clearance of dying cells. These findings suggest that the early wave of infiltrating monocytes may be beneficial to stroke repair and future therapies aimed at mitigating microglia cell death may prove more effective than attempting to elicit targeted anti-inflammatory responses from damaged cells.