Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "McCusker, Kelly A"
Sort by:
Too Broad and Too Narrow: One Library’s Experience with Approval Plans
In 2019 a public urban academic research library decided to implement a subject-based approval plan to assess its viability to replace single-title book ordering. However, due in part to our library’s unique collecting needs, the plan necessitated extensive and continuous reviews and revisions, which ultimately prompted us to discontinue the plan.
Too Broad and Too Narrow: One Library's Experience with Approval Plans
In 2019 a public urban academic research library decided to implement a subject- based approval plan to assess its viability to replace single-title book ordering. However, due in part to our library's unique collecting needs, the plan necessitated extensive and continuous reviews and revisions, which ultimately prompted us to discontinue the plan. Our experience was illuminating because, in the end, we felt we needed to experiment with approval plans to be sure that we were doing the right thing for our library and its users in continuing single-title purchasing of monographs.
Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss
Surface air temperature over central Eurasia decreased over the past twenty-five winters at a time of strongly increasing anthropogenic forcing and Arctic amplification. It has been suggested that this cooling was related to an increase in cold winters due to sea-ice loss in the Barents–Kara Sea. Here we use over 600 years of atmosphere-only global climate model simulations to isolate the effect of Arctic sea-ice loss, complemented with a 50-member ensemble of atmosphere–ocean global climate model simulations allowing for external forcing changes (anthropogenic and natural) and internal variability. In our atmosphere-only simulations, we find no evidence of Arctic sea-ice loss having impacted Eurasian surface temperature. In our atmosphere–ocean simulations, we find just one simulation with Eurasian cooling of the observed magnitude but Arctic sea-ice loss was not involved, either directly or indirectly. Rather, in this simulation the cooling is due to a persistent circulation pattern combining high pressure over the Barents–Kara Sea and a downstream trough. We conclude that the observed cooling over central Eurasia was probably due to a sea-ice-independent internally generated circulation pattern ensconced over, and nearby, the Barents–Kara Sea since the 1980s. These results improve our knowledge of high-latitude climate variability and change, with implications for our understanding of impacts in high-northern-latitude systems. Winter cooling over Eurasia has been suggested to be linked to Arctic sea-ice loss. Climate model simulations reveal no evidence for such a link and instead suggest that a persistent atmospheric circulation pattern is responsible.
Estimating a social cost of carbon for global energy consumption
Estimates of global economic damage caused by carbon dioxide (CO 2 ) emissions can inform climate policy 1 – 3 . The social cost of carbon (SCC) quantifies these damages by characterizing how additional CO 2 emissions today impact future economic outcomes through altering the climate 4 – 6 . Previous estimates have suggested that large, warming-driven increases in energy expenditures could dominate the SCC 7 , 8 , but they rely on models 9 – 11 that are spatially coarse and not tightly linked to data 2 , 3 , 6 , 7 , 12 , 13 . Here we show that the release of one ton of CO 2 today is projected to reduce total future energy expenditures, with most estimates valued between −US$3 and −US$1, depending on discount rates. Our results are based on an architecture that integrates global data, econometrics and climate science to estimate local damages worldwide. Notably, we project that emerging economies in the tropics will dramatically increase electricity consumption owing to warming, which requires critical infrastructure planning. However, heating reductions in colder countries offset this increase globally. We estimate that 2099 annual global electricity consumption increases by about 4.5 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in global mean surface temperature (GMST), whereas direct consumption of other fuels declines by about 11.3 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in GMST. Our finding of net savings contradicts previous research 7 , 8 , because global data indicate that many populations will remain too poor for most of the twenty-first century to substantially increase energy consumption in response to warming. Importantly, damage estimates would differ if poorer populations were given greater weight 14 . Using global data, econometrics and climate science to estimate the damages induced by the emission of one ton of carbon dioxide, climate change is projected to increase electricity spending but reduce overall end-use energy expenditure.
Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models
The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.
Separating the Influences of Low-Latitude Warming and Sea Ice Loss on Northern Hemisphere Climate Change
Analyzing a multimodel ensemble of coupled climate model simulations forced with Arctic sea ice loss using a two-parameter pattern-scaling technique to remove the cross-coupling between low- and high-latitude responses, the sensitivity to high-latitude sea ice loss is isolated and contrasted to the sensitivity to low-latitude warming. Despite some differences in experimental design, the Northern Hemisphere near-surface atmospheric sensitivity to sea ice loss is found to be robust across models in the cold season; however, a larger intermodel spread is found at the surface in boreal summer, and in the free tropospheric circulation. In contrast, the sensitivity to low-latitude warming is most robust in the free troposphere and in the warm season, with more intermodel spread in the surface ocean and surface heat flux over the Northern Hemisphere. The robust signals associated with sea ice loss include upward turbulent and longwave heat fluxes where sea ice is lost, warming and freshening of the Arctic Ocean, warming of the eastern North Pacific Ocean relative to the western North Pacific with upward turbulent heat fluxes in the Kuroshio Extension, and salinification of the shallow shelf seas of the Arctic Ocean alongside freshening in the subpolar North Atlantic Ocean. In contrast, the robust signals associated with low-latitude warming include intensified ocean warming and upward latent heat fluxes near the western boundary currents, freshening of the Pacific Ocean, salinification of the North Atlantic, and downward sensible and longwave fluxes over the ocean.
Earth’s long-term climate stabilized by clouds
The Sun was dimmer earlier in Earth’s history, but glaciation was rare in the Precambrian: this is the ‘faint young Sun problem’. Most solutions rely on changes to the chemical composition of the atmosphere to compensate via a stronger greenhouse effect, whereas physical feedbacks have received less attention. We perform global climate model experiments, using two versions of the Community Atmosphere Model, in which a reduced solar constant is offset by higher CO 2 . Model runs corresponding to past climate show a substantial decrease in low clouds and hence planetary albedo compared with present, which contributes 40% of the required forcing to offset the faint Sun. Through time, the climatically important stratocumulus decks have grown in response to a brightening Sun and decreasing greenhouse effect, driven by stronger cloud-top radiative cooling (which drives low cloud formation) and a stronger inversion (which sustains clouds against dry air entrainment from above). We find that systematic changes to low clouds have had a major role in stabilizing climate through Earth’s history, which demonstrates the importance of physical feedbacks on long-term climate stabilization, and a smaller role for geochemical feedbacks. Reduced planetary albedo due to fewer low clouds on early Earth could explain some 40% of the required forcing to offset the faint young Sun, according to global climate model experiments.
Global Downscaled Projections for Climate Impacts Research (GDPCIR): preserving quantile trends for modeling future climate impacts
Global climate models (GCMs) are important tools for understanding the climate system and how it is projected to evolve under scenario-driven emissions pathways. Their output is widely used in climate impacts research for modeling the current and future effects of climate change. However, climate model output remains coarse in relation to the high-resolution climate data needed for climate impacts studies, and it also exhibits biases relative to observational data. Treatment of the distribution tails is a key challenge in existing bias-adjusted and downscaled climate datasets available at a global scale; many of these datasets used quantile mapping techniques that were known to dampen or amplify trends in the tails. In this study, we apply the Quantile Delta Mapping (QDM) method for bias adjustment. After bias adjustment, we apply a new spatial downscaling method called Quantile-Preserving Localized-Analog Downscaling (QPLAD), which is designed to preserve trends in the distribution tails. Both methods are integrated into a transparent and reproducible software pipeline, which we apply to global, daily GCM surface variable outputs (maximum and minimum temperature and total precipitation) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) experiments for the historical experiment and four future emissions scenarios ranging from aggressive mitigation to no mitigation, namely SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5 . We use the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 temperature and precipitation reanalysis as the reference dataset over the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) reference period of 1995–2014. We produce bias-adjusted and downscaled data over the historical period (1950–2014) and the future emissions pathways (2015–2100) for 25 GCMs in total. The output dataset is the Global Downscaled Projections for Climate Impacts Research (GDPCIR), a global, daily, 0.25∘ horizontal-resolution product which is publicly available and hosted on Microsoft AI for Earth's Planetary Computer (https://planetarycomputer.microsoft.com/dataset/group/cil-gdpcir/, last access: 23 October 2023).
Rapid and extensive warming following cessation of solar radiation management
Solar radiation management (SRM) has been proposed as a means to alleviate the climate impacts of ongoing anthropogenic greenhouse gas (GHG) emissions. However, its efficacy depends on its indefinite maintenance, without interruption from a variety of possible sources, such as technological failure or global cooperation breakdown. Here, we consider the scenario in which SRM-via stratospheric aerosol injection-is terminated abruptly following an implementation period during which anthropogenic GHG emissions have continued. We show that upon cessation of SRM, an abrupt, spatially broad, and sustained warming over land occurs that is well outside 20th century climate variability bounds. Global mean precipitation also increases rapidly following cessation, however spatial patterns are less coherent than temperature, with almost half of land areas experiencing drying trends. We further show that the rate of warming-of critical importance for ecological and human systems-is principally controlled by background GHG levels. Thus, a risk of abrupt and dangerous warming is inherent to the large-scale implementation of SRM, and can be diminished only through concurrent strong reductions in anthropogenic GHG emissions.