Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "McDermaid, Michelle"
Sort by:
Multivariable prognostic modelling to improve prediction of colorectal cancer recurrence: the PROSPeCT trial
Objective Improving prognostication to direct personalised therapy remains an unmet need. This study prospectively investigated promising CT, genetic, and immunohistochemical markers to improve the prediction of colorectal cancer recurrence. Material and methods This multicentre trial (ISRCTN 95037515) recruited patients with primary colorectal cancer undergoing CT staging from 13 hospitals. Follow-up identified cancer recurrence and death. A baseline model for cancer recurrence at 3 years was developed from pre-specified clinicopathological variables (age, sex, tumour-node stage, tumour size, location, extramural venous invasion, and treatment). Then, CT perfusion (blood flow, blood volume, transit time and permeability), genetic (RAS, RAF, and DNA mismatch repair), and immunohistochemical markers of angiogenesis and hypoxia (CD105, vascular endothelial growth factor, glucose transporter protein, and hypoxia-inducible factor) were added to assess whether prediction improved over tumour-node staging alone as the main outcome measure. Results Three hundred twenty-six of 448 participants formed the final cohort (226 male; mean 66 ± 10 years. 227 (70%) had ≥ T3 stage cancers; 151 (46%) were node-positive; 81 (25%) developed subsequent recurrence. The sensitivity and specificity of staging alone for recurrence were 0.56 [95% CI: 0.44, 0.67] and 0.58 [0.51, 0.64], respectively. The baseline clinicopathologic model improved specificity (0.74 [0.68, 0.79], with equivalent sensitivity of 0.57 [0.45, 0.68] for high vs medium/low-risk participants. The addition of prespecified CT perfusion, genetic, and immunohistochemical markers did not improve prediction over and above the clinicopathologic model (sensitivity, 0.58–0.68; specificity, 0.75–0.76). Conclusion A multivariable clinicopathological model outperformed staging in identifying patients at high risk of recurrence. Promising CT, genetic, and immunohistochemical markers investigated did not further improve prognostication in rigorous prospective evaluation. Clinical relevance statement A prognostic model based on clinicopathological variables including age, sex, tumour-node stage, size, location, and extramural venous invasion better identifies colorectal cancer patients at high risk of recurrence for neoadjuvant/adjuvant therapy than stage alone. Key Points Identification of colorectal cancer patients at high risk of recurrence is an unmet need for treatment personalisation . This model for recurrence, incorporating many patient variables, had higher specificity than staging alone . Continued optimisation of risk stratification schema will help individualise treatment plans and follow-up schedules .
Addition of gemcitabine to paclitaxel, epirubicin, and cyclophosphamide adjuvant chemotherapy for women with early-stage breast cancer (tAnGo): final 10-year follow-up of an open-label, randomised, phase 3 trial
The tAnGo trial was designed to investigate the potential role of gemcitabine when added to anthracycline and taxane-containing adjuvant chemotherapy for early breast cancer. When this study was developed, gemcitabine had shown significant activity in metastatic breast cancer, and there was evidence of a favourable interaction with paclitaxel. tAnGo was an international, open-label, randomised, phase 3 superiority trial that enrolled women aged 18 years or older with newly diagnosed, early-stage breast cancer who had a definite indication for chemotherapy, any nodal status, any hormone receptor status, Eastern Cooperative Oncology Group performance status of 0–1, and adequate bone marrow, hepatic, and renal function. Women were recruited from 127 clinical centres and hospitals in the UK and Ireland, and randomly assigned (1:1) to one of two treatment regimens: epirubicin, cyclophosphamide, and paclitaxel (four cycles of 90 mg/m2 intravenously administered epirubicin and 600 mg/m2 intravenously administered cyclophosphamide on day 1 every 3 weeks, followed by four cycles of 175 mg/m2 paclitaxel as a 3 h infusion on day 1 every 3 weeks) or epirubicin, cyclophosphamide, and paclitaxel plus gemcitabine (the same chemotherapy regimen as the other group, with the addition of 1250 mg/m2 gemcitabine to the paclitaxel cycles, administered intravenously as a 0·5 h infusion on days 1 and 8 every 3 weeks). Patients were randomly assigned by a central computerised deterministic minimisation procedure, with stratification by country, age, radiotherapy intent, nodal status, and oestrogen receptor and HER-2 status. The primary endpoint was disease-free survival and the trial aimed to detect 5% differences in 5-year disease-free survival between the treatment groups. Recruitment completed in 2004 and this is the final, intention-to-treat analysis. This trial is registered with EudraCT (2004-002927-41), ISRCTN (51146252), and ClinicalTrials.gov (NCT00039546). Between Aug 22, 2001, and Nov 26, 2004, 3152 patients were enrolled and randomly assigned to epirubicin, cyclophosphamide, paclitaxel, and gemcitabine (gemcitabine group; n=1576) or to epirubicin, cyclophosphamide, and paclitaxel (control group; n=1576). 11 patients (six in the gemcitabine group and five in the control group) were ineligible because of pre-existing metastases and were therefore excluded from the analysis. At this protocol-specified final analysis (median follow-up 10 years [IQR 10–10]), 1087 disease-free survival events and 914 deaths had occurred. Disease-free survival did not differ significantly between the treatment groups at 10 years (65% [63–68] in the gemcitabine group vs 65% [62–67] in the control group), and median disease-free survival was not reached (adjusted hazard ratio 0·97 [95% CI 0·86–1·10], p=0·64). Toxicity, dose intensity, and a detailed safety substudy showed both regimens to be safe, deliverable, and tolerable. Grade 3 and 4 toxicities were reported at expected levels in both groups. The most common were neutropenia (527 [34%] of 1565 patients in the gemcitabine group vs 412 [26%] of 1567 in the control group), myalgia and arthralgia (207 [13%] vs 186 [12%]), fatigue (207 [13%] vs 152 [10%]), infection (202 [13%] vs 141 [9%]), vomiting (143 [9%] vs 108 [7%]), and nausea (132 [8%] vs 102 [7%]). The addition of gemcitabine to anthracycline and taxane-based adjuvant chemotherapy at this dose and schedule confers no therapeutic advantage in terms of disease-free survival in early breast cancer, although it can cause increased toxicity. Therefore, gemcitabine has not been added to standard adjuvant chemotherapy in breast cancer for any subgroup. Cancer Research UK core funding for Clinical Trials Unit at the University of Birmingham, Eli Lilly, Bristol-Myers Squibb, and Pfizer.