Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
900 result(s) for "McDonald, Marie T"
Sort by:
Clinical application of exome sequencing in undiagnosed genetic conditions
BackgroundThere is considerable interest in the use of next-generation sequencing to help diagnose unidentified genetic conditions, but it is difficult to predict the success rate in a clinical setting that includes patients with a broad range of phenotypic presentations.MethodsThe authors present a pilot programme of whole-exome sequencing on 12 patients with unexplained and apparent genetic conditions, along with their unaffected parents. Unlike many previous studies, the authors did not seek patients with similar phenotypes, but rather enrolled any undiagnosed proband with an apparent genetic condition when predetermined criteria were met.ResultsThis undertaking resulted in a likely genetic diagnosis in 6 of the 12 probands, including the identification of apparently causal mutations in four genes known to cause Mendelian disease (TCF4, EFTUD2, SCN2A and SMAD4) and one gene related to known Mendelian disease genes (NGLY1). Of particular interest is that at the time of this study, EFTUD2 was not yet known as a Mendelian disease gene but was nominated as a likely cause based on the observation of de novo mutations in two unrelated probands. In a seventh case with multiple disparate clinical features, the authors were able to identify homozygous mutations in EFEMP1 as a likely cause for macular degeneration (though likely not for other features).ConclusionsThis study provides evidence that next-generation sequencing can have high success rates in a clinical setting, but also highlights key challenges. It further suggests that the presentation of known Mendelian conditions may be considerably broader than currently recognised.
Alternative transcripts in variant interpretation: the potential for missed diagnoses and misdiagnoses
Purpose Guidelines by professional organizations for assessing variant pathogenicity include the recommendation to utilize biologically relevant transcripts; however, there is variability in transcript selection by laboratories. Methods We describe three patients whose genomic results were incorrect, because alternative transcripts and tissue expression patterns were not considered by the commercial laboratories. Results In individual 1, a pathogenic coding variant in a brain-expressed isoform of CKDL5 was missed twice on sequencing, because the variant was intronic in the transcripts considered in analysis. In individual 2, a microdeletion affecting KMT2C was not reported on microarray, since deletions of proximal exons in this gene are seen in healthy individuals; however, this individual had a more distal deletion involving the brain-expressed KMT2C isoform, giving her a diagnosis of Kleefstra syndrome. Individual 3 was reported to have a pathogenic variant in exon 10 of OFD1 on exome, but had no typical features of the OFD1 -related disorders. Since exon 10 is spliced from the more biologically relevant transcripts of OFD1 , it was determined that he did not have an OFD1 disorder. Conclusion These examples illustrate the importance of considering alternative transcripts as a potential confounder when genetic results are negative or discordant with the phenotype.
Biallelic mutations in FDXR cause neurodegeneration associated with inflammation
Mitochondrial dysfunction lies behind many neurodegenerative disorders, owing largely to the intense energy requirements of most neurons. Such mitochondrial dysfunction may work through a variety of mechanisms, from direct disruption of the electron transport chain to abnormal mitochondrial biogenesis. Recently, we have identified biallelic mutations in the mitochondrial flavoprotein “ferredoxin reductase” (FDXR) gene as a novel cause of mitochondriopathy, peripheral neuropathy, and optic atrophy. In this report, we expand upon those results by describing two new cases of disease-causing FDXR variants in patients with variable severity of phenotypes, including evidence of an inflammatory response in brain autopsy. To investigate the underlying pathogenesis, we examined neurodegeneration in a mouse model. We found that Fdxr mutant mouse brain tissues share pathological changes similar to those seen in patient autopsy material, including increased astrocytes. Furthermore, we show that these abnormalities are associated with increased levels of markers for both neurodegeneration and gliosis, with the latter implying inflammation as a major factor in the pathology of Fdxr mutations. These data provide further insight into the pathogenic mechanism of FDXR-mediated central neuropathy, and suggest an avenue for mechanistic studies that will ultimately inform treatment.
Further clinical and molecular delineation of the 15q24 microdeletion syndrome
BackgroundChromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis.AimTo further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients.MethodsBreakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient.ResultsNine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8–10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome.ConclusionThe molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1–Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screening.
Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture
Christopher Walsh and colleagues used targeted high-throughput sequencing to identify mutations in WDR62 in human microcephaly. The authors report that WDR62 is a centrosomal protein. Genes associated with human microcephaly, a condition characterized by a small brain, include critical regulators of proliferation, cell fate and DNA repair. We describe a syndrome of congenital microcephaly and diverse defects in cerebral cortical architecture. Genome-wide linkage analysis in two families identified a 7.5-Mb locus on chromosome 19q13.12 containing 148 genes. Targeted high throughput sequence analysis of linked genes in each family yielded > 4,000 DNA variants and implicated a single gene, WDR62 , as harboring potentially deleterious changes. We subsequently identified additional WDR62 mutations in four other families. Magnetic resonance imaging and postmortem brain analysis supports important roles for WDR62 in the proliferation and migration of neuronal precursors. WDR62 is a WD40 repeat–containing protein expressed in neuronal precursors as well as in postmitotic neurons in the developing brain and localizes to the spindle poles of dividing cells. The diverse phenotypes of WDR62 suggest it has central roles in many aspects of cerebral cortical development.
Identification of EPCAM mutation: clinical use of microarray
Key Clinical Message We report a case of an infant with congenital tufting enteropathy (CTE) who presented with severe failure to thrive despite multiple interventions. This study illustrates that CTE may be missed by endoscopy, and the use of chromosomal microarray and immunohistological analysis may be integral to diagnosis. We report a case of an infant with congenital tufting enteropathy (CTE) who presented with severe failure to thrive despite multiple interventions. This study illustrates that CTE may be missed by endoscopy, and the use of chromosomal microarray and immunohistological analysis may be integral to diagnosis.
Interference of nuclear mitochondrial DNA segments in mitochondrial DNA testing resembles biparental transmission of mitochondrial DNA in humans
Reports have questioned the dogma of exclusive maternal transmission of human mitochondrial DNA (mtDNA), including the recent report of an admixture of two mtDNA haplogroups in individuals from three multigeneration families. This was interpreted as being consistent with biparental transmission of mtDNA in an autosomal dominant–like mode. The authenticity and frequency of these findings are debated. We retrospectively analyzed individuals with two mtDNA haplogroups from 2017 to 2019 and selected four families for further study. We identified this phenomenon in 104/27,388 (approximately 1/263) unrelated individuals. Further study revealed (1) a male with two mitochondrial haplogroups transmits only one haplogroup to some of his offspring, consistent with nuclear transmission; (2) the heteroplasmy level of paternally transmitted variants is highest in blood, lower in buccal, and absent in muscle or urine of the same individual, indicating it is inversely correlated with mtDNA content; and (3) paternally transmitted apparent large-scale mtDNA deletions/duplications are not associated with a disease phenotype. These findings strongly suggest that the observed mitochondrial haplogroup of paternal origin resulted from coamplification of rare, concatenated nuclear mtDNA segments with genuine mtDNA during testing. Evaluation of additional specimen types can help clarify the clinical significance of the observed results.
De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy
Objective To determine the cause and course of a novel syndrome with progressive encephalopathy and brain atrophy in children. Methods Clinical whole‐exome sequencing was performed for global developmental delay and intellectual disability; some patients also had spastic paraparesis and evidence of clinical regression. Six patients were identified with de novo missense mutations in the kinesin gene KIF1A. The predicted functional disruption of these mutations was assessed in silico to compare the calculated conformational flexibility and estimated efficiency of ATP binding to kinesin motor domains of wild‐type (WT) versus mutant alleles. Additionally, an in vitro microtubule gliding assay was performed to assess the effects of de novo dominant, inherited recessive, and polymorphic variants on KIF1A motor function. Results All six subjects had severe developmental delay, hypotonia, and varying degrees of hyperreflexia and spastic paraparesis. Microcephaly, cortical visual impairment, optic neuropathy, peripheral neuropathy, ataxia, epilepsy, and movement disorders were also observed. All six patients had a degenerative neurologic course with progressive cerebral and cerebellar atrophy seen on sequential magnetic resonance imaging scans. Computational modeling of mutant protein structures when compared to WT kinesin showed substantial differences in conformational flexibility and ATP‐binding efficiency. The de novo KIF1A mutants were nonmotile in the microtubule gliding assay. Interpretation De novo mutations in KIF1A cause a degenerative neurologic syndrome with brain atrophy. Computational and in vitro assays differentiate the severity of dominant de novo heterozygous versus inherited recessive KIF1A mutations. The profound effect de novo mutations have on axonal transport is likely related to the cause of progressive neurologic impairment in these patients.
A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay
Evan Eichler and colleagues identify a recurrent microdeletion on 16p12.1 associated with developmental, cognitive and neuropsychiatric phenotypes. They also show that more severe phenotypes are frequently correlated with the presence of a second large genomic rearrangement, supporting a complex model of pathogenesis that may underlie the variable expressivity typical of many microdeletion syndromes. We report the identification of a recurrent, 520-kb 16p12.1 microdeletion associated with childhood developmental delay. The microdeletion was detected in 20 of 11,873 cases compared with 2 of 8,540 controls ( P = 0.0009, OR = 7.2) and replicated in a second series of 22 of 9,254 cases compared with 6 of 6,299 controls ( P = 0.028, OR = 2.5). Most deletions were inherited, with carrier parents likely to manifest neuropsychiatric phenotypes compared to non-carrier parents ( P = 0.037, OR = 6). Probands were more likely to carry an additional large copy-number variant when compared to matched controls (10 of 42 cases, P = 5.7 × 10 −5 , OR = 6.6). The clinical features of individuals with two mutations were distinct from and/or more severe than those of individuals carrying only the co-occurring mutation. Our data support a two-hit model in which the 16p12.1 microdeletion both predisposes to neuropsychiatric phenotypes as a single event and exacerbates neurodevelopmental phenotypes in association with other large deletions or duplications. Analysis of other microdeletions with variable expressivity indicates that this two-hit model might be more generally applicable to neuropsychiatric disease.