Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
325 result(s) for "McDowell, Colin"
Sort by:
The anatomy of fashion : why we dress the way we do
\"An entirely new exploration of how we dress, based on that obvious--but often overlooked--foundation: the human body. Examining each part of the body and how it has been dressed allows for historical, geographical, and cultural juxtapositions that are not obvious from a more traditional approach to fashion\"--Dust jacket flap.
An N-glycome tissue atlas of 15 human normal and cancer tissue types determined by MALDI-imaging mass spectrometry
N- glycosylation is an abundant post-translational modification of most cell-surface proteins. N- glycans play a crucial role in cellular functions like protein folding, protein localization, cell–cell signaling, and immune detection. As different tissue types display different N- glycan profiles, changes in N- glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N- glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N -glycomes, N -glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N- glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N- glycan databases, the N- glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N- acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N- glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.
Acquired Drug Resistance Enhances Imidazoquinoline Efflux by P-Glycoprotein
Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown. We begin to address this by investigating P-gp mediated efflux of TLR 7/8 agonists. First, we used functionalized liposomes to determine that imidazoquinoline TLR agonists Imiquimod, Resiquimod, and Gardiquimod are substrates for P-gp. Interestingly, the least potent imidazoquinoline (Imiquimod) was the best P-gp substrate. Next, we compared imidazoquinoline efflux in MDR cancer cell lines with enhanced P-gp expression relative to parent cancer cell lines. Using P-gp competitive substrates and inhibitors, we observed that imidazoquinoline efflux occurs through P-gp and, for Imiquimod, is enhanced as a consequence of acquired drug resistance. This suggests that enhancing efflux susceptibility could be an important consideration in the rational design of next generation immunotherapies that modulate activity of tumor-infiltrating immune cells.
Use of a Novel Whole Blood Separation and Transport Device for Targeted and Untargeted Proteomics
Background: There is significant interest in developing alternatives to traditional blood transportation and separation methods, which often require centrifugation and cold storage to preserve specimen integrity. Here we provide new performance findings that characterize a novel device that separates whole blood via lateral flow then dries the isolated components for room temperature storage and transport. Methods: Untargeted proteomics was performed on non-small cell lung cancer (NSCLC) and normal healthy plasma applied to the device or prepared neat. Results: Significantly, proteomic profiles from the storage device were more reproducible than from neat plasma. Proteins depleted or absent in the device preparation were shown to be absorbed onto the device membrane through largely hydrophilic interactions. Use of the device did not impact proteins relevant to an NSCLC clinical immune classifier. The device was also evaluated for use in targeted proteomics experiments using multiple-reaction monitoring (MRM) mass spectrometry. Intra-specimen detection intensity for protein targets between neat and device preparations showed a strong correlation, and device variation was comparable to the neat after normalization. Inter-specimen measurements between the device and neat preparations were also highly concordant. Conclusions: These studies demonstrate that the lateral flow device is a viable blood separation and transportation tool for untargeted and targeted proteomics applications.
Rewiring of the N-Glycome with prostate cancer progression and therapy resistance
An understanding of the molecular features associated with prostate cancer progression (PCa) and resistance to hormonal therapy is crucial for the identification of new targets that can be utilized to treat advanced disease and prolong patient survival. The glycome, which encompasses all sugar polymers (glycans) synthesized by cells, has remained relatively unexplored in the context of advanced PCa despite the fact that glycans have great potential value as biomarkers and therapeutic targets due to their high density on the cell surface. Using imaging mass spectrometry (IMS), we profiled the N-linked glycans in tumor tissue derived from 131 patients representing the major disease states of PCa to identify glycosylation changes associated with loss of tumor cell differentiation, disease remission, therapy resistance and disease recurrence, as well as neuroendocrine (NE) differentiation which is a major mechanism for therapy failure. Our results indicate significant changes to the glycosylation patterns in various stages of PCa, notably a decrease in tri- and tetraantennary glycans correlating with disease remission, a subsequent increase in these structures with the transition to therapy-resistant PCa, and downregulation of complex N-glycans correlating with NE differentiation. Furthermore, both nonglucosylated and monoglucosylated mannose 9 demonstrate aberrant upregulation in therapy-resistant PCa which may be useful therapeutic targets as these structures are not normally presented in healthy tissue. Our findings characterize changes to the tumor glycome that occur with hormonal therapy and the development of castration-resistant PCa (CRPC), identifying several glycan markers and signatures which may be useful for diagnostic or therapeutic purposes.
34380 Cadherin complexes recruit PIWIL2 to suppress transposons and pro-tumorigenic transformation
ABSTRACT IMPACT: This study has uncovered a novel surprising mechanism involving the epithelial adherens junctions and transposon regulation that can deepen our understanding of tumorigenesis. OBJECTIVES/GOALS: Recent studies show that genomic instability in 50% of tumors can be attributed to increased transposon activity, but the the reasons for this activity are unknown. We have evidence of a novel mechanism linking adherens junctions with transposon regulation. We hypothesize that adherens junctions suppress transposons to maintain genomic integrity. METHODS/STUDY POPULATION: We observed co-localization of PIWIL2 with adherens junction components of well differentiated epithelial breast, kidney and colon cell lines MCF10A, MDCK and CACO2, respectively, through immunofluorescence staining, confocal microscopy, and co-immunoprecipitation studies. Breast cancer cell lines MCF7 and MDA-231 were also observed using immunofluorescence to determine the localization of PIWIL2 in cancer cell lines. shRNA knockdown of PIWIL2 in MCF10A cells, followed by western blot, immunofluorescence, and qRT-PCR was performed to confirm the knockdown, observe if transposons were upregulated, and determine the extent of DNA damage to the genome by the marker gamma-H2AX. RNA-seq will be performed to determine piRNA sequences and possible targets of PIWIL2. RESULTS/ANTICIPATED RESULTS: Our data have revealed an interaction of E-cadherin and p120 catenin, core components of adherens junctions, with PIWIL2, a member of the Argonaute family of proteins and a key component of the piRNA processing pathway that is responsible for transposon silencing. piRNAs (PIWI-interacting RNAs) are a distinct class of small RNAs that bind to PIWI proteins, and aid in transposon degradation. We found co-localization of PIWIL2 with E-cadherin and p120 catenin at adherens junctions of well-differentiated epithelial cells, whereas this association was lost in cancer cells. Furthermore, our data show that E-cadherin depletion results in mis-localization of PIWIL2 and TDRD1, another member of the PIWI complex. E-cadherin depletion also results in upregulation of transposons and ?-H2AX, an indicator of DNA damage. DISCUSSION/SIGNIFICANCE OF FINDINGS: Since both loss of junctional integrity and increased transposon activity are universal events in cancer, this study has the potential to further our understanding of the causes of tumorigenesis. Understanding the mechanisms of transposon regulation has the potential to lead to a therapeutic target in the future.