Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"McGee Dónal"
Sort by:
Antioxidant Bioprospecting in Microalgae: Characterisation of the Potential of Two Marine Heterokonts from Irish Waters
2021
Microalgae constitute a heterogeneous and diverse range of organisms capable of accumulating bioactive metabolites, making them promising feedstock for applications in the nutraceutical, functional food, animal feed, biofertilisation or biofuel sectors. There has been renewed interest in recent times in natural sources of antioxidants, particularly as health products and preserving agents. Microalgae strains isolated from aquatic habitats in Ireland were successfully brought into culture. The 91 strains were grown phototrophically in nutrient-enriched media to generate biomass, which was harvested and assessed for antioxidant potential. Extracts were screened for antioxidant activity using a modified volumetric Trolox-ABTS assay and the Folin-Ciocalteu method. Two heterokont marine strains of interest were further studied to ascertain variations in antioxidant capacity across different stages of batch culture growth. The antioxidant activity of extracts of bacillariophyte cf. Stauroneis sp. LACW24 and ocrophyte cf. Phaeothamnion sp. LACW34 increased during growth with a maximum being observed during the late stationary or early death phase (2.5- to 8-fold increases between days 20 and 27). Strains LACW24 and LACW34 contained 5.9 and 3.0 mg g−1 (DW) of the xanthophyll fucoxanthin, respectively. Extracts of strains also showed no cytotoxicity towards mouse cell lines. These results highlight the potential of these strains for biomass valorisation and cultivation upscaling and to be further considered as part of ongoing bioprospecting efforts towards identifying novel species to join the relatively narrow range of commercially exploited marine microalgae species.
Journal Article
Influence of spectral intensity and quality of LED lighting on photoacclimation, carbon allocation and high-value pigments in microalgae
2020
Tailoring spectral quality during microalgal cultivation can provide a means to increase productivity and enhance biomass composition for downstream biorefinery. Five microalgae strains from three distinct lineages were cultivated under varying spectral intensities and qualities to establish their effects on pigments and carbon allocation. Light intensity significantly impacted pigment yields and carbon allocation in all strains, while the effects of spectral quality were mostly species-specific. High light conditions induced chlorophyll photoacclimation and resulted in an increase in xanthophyll cycle pigments in three of the five strains. High-intensity blue LEDs increased zeaxanthin tenfold in Rhodella sp. APOT_15 relative to medium or low light conditions. White light however was optimal for phycobiliprotein content (11.2 mg mL−1) for all tested light intensities in this strain. The highest xanthophyll pigment yields for the Chlorophyceae were associated with medium-intensity blue and green lights for Brachiomonas submarina APSW_11 (5.6 mg g−1 lutein and 2.0 mg g−1 zeaxanthin) and Kirchneriella aperta DMGFW_21 (1.5 mg g−1 lutein and 1 mg g−1 zeaxanthin), respectively. The highest fucoxanthin content in both Heterokontophyceae strains (2.0 mg g−1) was associated with medium and high white light for Stauroneis sp. LACW_24 and Phaeothamnion sp. LACW_34, respectively. This research provides insights into the application of LEDs to influence microalgal physiology, highlighting the roles of low light on lipid metabolism in Rhodella sp. APOT_15, of blue and green lights for carotenogenesis in Chlorophyceae and red light-induced photoacclimation in diatoms.
Journal Article
Microbial Poly-γ-Glutamic Acid (γ-PGA) as an Effective Tooth Enamel Protectant
2022
Poly-γ-glutamic acid (γ-PGA) is a bio-derived water-soluble, edible, non-immunogenic nylon-like polymer with the biochemical characteristics of a polypeptide. This Bacillus-derived material has great potential for a wide range of applications, from bioremediation to tunable drug delivery systems. In the context of oral care, γ-PGA holds great promise in enamel demineralisation prevention. The salivary protein statherin has previously been shown to protect tooth enamel from acid dissolution and act as a reservoir for free calcium ions within oral cavities. Its superb enamel-binding capacity is attributed to the L-glutamic acid residues of this 5380 Da protein. In this study, γ-PGA was successfully synthesised from Bacillus subtilis natto cultivated on supplemented algae media and standard commercial media. The polymers obtained were tested for their potential to inhibit demineralisation of hydroxyapatite (HAp) when exposed to caries simulating acidic conditions. Formulations presenting 0.1, 0.25, 0.5, 0.75, 1, 2, 3 and 4% (w/v) γ-PGA concentration were assessed to determine the optimal conditions. Our data suggests that both the concentration and the molar mass of the γ-PGA were significant in enamel protection (p = 0.028 and p < 0.01 respectively). Ion Selective Electrode, combined with Fourier Transform Infra-Red studies, were employed to quantify enamel protection capacity of γ-PGA. All concentrations tested showed an inhibitory effect on the dissolution rate of calcium ions from hydroxyapatite, with 1% (wt) and 2% (wt) concentrations being the most effective. The impact of the average molar mass (M) on enamel dissolution was also investigated by employing commercial 66 kDa, 166 kDa, 440 kDa and 520 kDa γ-PGA fractions. All γ-PGA solutions adhered to the surface of HAp with evidence that this remained after 60 min of continuous acidic challenge. Inductively Coupled Plasma analysis showed a significant abundance of calcium ions associated with γ-PGA, which suggests that this material could also act as a responsive calcium delivery system. We have concluded that all γ-PGA samples tested (commercial and algae derived) display enamel protection capacity regardless of their concentration or average molar mass. However, we believe that γ-PGA D/L ratios might affect the binding more than its molar mass.
Journal Article
Identification of a myometrial molecular profile for dystocic labor
by
Rexhepaj, Elton
,
McGee, Sharon F
,
O'Herlihy, Colm
in
Adult
,
Aminopeptidases - genetics
,
Births
2011
Background
The most common indication for cesarean section (CS) in nulliparous women is dystocia secondary to ineffective myometrial contractility. The aim of this study was to identify a molecular profile in myometrium associated with dystocic labor.
Methods
Myometrial biopsies were obtained from the upper incisional margins of nulliparous women undergoing lower segment CS for dystocia (n = 4) and control women undergoing CS in the second stage who had demonstrated efficient uterine action during the first stage of labor (n = 4). All patients were in spontaneous (non-induced) labor and had received intrapartum oxytocin to accelerate labor. RNA was extracted from biopsies and hybridized to Affymetrix HuGene U133A Plus 2 microarrays. Internal validation was performed using quantitative SYBR Green Real-Time PCR.
Results
Seventy genes were differentially expressed between the two groups. 58 genes were down-regulated in the dystocia group. Gene ontology analysis revealed 12 of the 58 down-regulated genes were involved in the immune response. These included (ERAP2, (8.67 fold change (FC)) HLA-DQB1 (7.88 FC) CD28 (2.60 FC), LILRA3 (2.87 FC) and TGFBR3 (2.1 FC)) Hierarchical clustering demonstrated a difference in global gene expression patterns between the samples from dystocic and non-dystocic labours. RT-PCR validation was performed on 4 genes ERAP2, CD28, LILRA3 and TGFBR3
Conclusion
These findings suggest an underlying molecular basis for dystocia in nulliparous women in spontaneous labor. Differentially expressed genes suggest an important role for the immune response in dystocic labor and may provide important indicators for new diagnostic assays and potential intrapartum therapeutic targets.
Journal Article