Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "McGready, Claire"
Sort by:
Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies
Background: Signet ring cell colorectal cancer (SRCCa) has a bleak prognosis. Employing molecular pathology techniques we investigated the potential of precision medicine in this disease. Methods: Using test ( n =26) and validation ( n =18) cohorts, analysis of mutations, DNA methylation and transcriptome was carried out. Microsatellite instability (MSI) status was established and immunohistochemistry (IHC) was used to test for adaptive immunity (CD3) and the immune checkpoint PDL1. Results: DNA methylation data split the cohorts into hypermethylated ( n =18, 41%) and hypomethylated groups ( n =26, 59%). The hypermethylated group predominant in the proximal colon was enriched for CpG island methylator phenotype (CIMP), BRAF V600E mutation and MSI ( P <0.001). These cases also had a high CD3 + immune infiltrate ( P <0.001) and expressed PDL1 ( P =0.03 in intra-tumoural lymphoid cells). The hypomethylated group predominant in the distal colon did not show any characteristic molecular features. We also detected a common targetable KIT mutation (c.1621A>C) across both groups. No statistically significant difference in outcome was observed between the two groups. Conclusions: Our data show that SRCCa phenotype comprises two distinct genotypes. The MSI + /CIMP + / BRAF V600E + /CD3 + /PDL1 + hypermethylated genotype is an ideal candidate for immune checkpoint inhibitor therapy. In addition, one fourth of SRCCa cases can potentially be targeted by KIT inhibitors.
Evaluation of PTGS2 Expression, PIK3CA Mutation, Aspirin Use and Colon Cancer Survival in a Population-Based Cohort Study
The association between aspirin use and improved survival after colorectal cancer diagnosis may be more pronounced in tumors that have PIK3CA mutations or high PTGS2 expression. However, the evidence of a difference in association by biomarker status lacks consistency. In this population-based colon cancer cohort study the interaction between these biomarkers, aspirin use, and survival was assessed. The cohort consisted of 740 stage II and III colon cancer patients diagnosed between 2004 and 2008. Aspirin use was determined through clinical note review. Tissue blocks were retrieved to determine immunohistochemical assessment of PTGS2 expression and the presence of PIK3CA mutations. Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) for colorectal cancer-specific and overall survival. In this cohort aspirin use was associated with a 31% improvement in cancer-specific survival compared to non-use (adjusted HR=0.69, 95% CI 0.47-0.98). This effect was more pronounced in tumors with high PTGS2 expression (PTGS2-high adjusted HR=0.55, 95% CI 0.32-0.96) compared to those with low PTGS2 expression (PTGS2-low adjusted HR=1.19, 95% CI 0.68-2.07, P for interaction=0.09). The aspirin by PTGS2 interaction was significant for overall survival (PTGS2-high adjusted HR=0.64, 95% CI 0.42-0.98 vs. PTGS2-low adjusted HR=1.28, 95% CI 0.80-2.03, P for interaction=0.04). However, no interaction was observed between aspirin use and PIK3CA mutation status for colorectal cancer-specific or overall survival. Aspirin use was associated with improved survival outcomes in this population-based cohort of colon cancer patients. This association differed according to PTGS2 expression but not PIK3CA mutation status. Limiting adjuvant aspirin trials to PIK3CA-mutant colorectal cancer may be too restrictive.
Systematic evaluation of PAXgene® tissue fixation for the histopathological and molecular study of lung cancer
Whilst adequate for most existing pathological tests, formalin is generally considered a poor DNA preservative and use of alternative fixatives may prove advantageous for molecular testing of tumour material; an increasingly common approach to identify targetable driver mutations in lung cancer patients. We collected paired PAXgene® tissue‐fixed and formalin‐fixed samples of block‐sized tumour and lung parenchyma, Temno‐needle core tumour biopsies and fine needle tumour aspirates (FNAs) from non‐small cell lung cancer resection specimens. Traditionally processed formalin fixed paraffin wax embedded (FFPE) samples were compared to paired PAXgene® tissue fixed paraffin‐embedded (PFPE) samples. We evaluated suitability for common laboratory tests (H&E staining and immunohistochemistry) and performance for downstream molecular investigations relevant to lung cancer, including RT‐PCR and next generation DNA sequencing (NGS). Adequate and comparable H&E staining was seen in all sample types and nuclear staining was preferable in PAXgene® fixed Temno tumour biopsies and tumour FNA samples. Immunohistochemical staining was broadly comparable. PFPE samples enabled greater yields of less‐fragmented DNA than FFPE comparators. PFPE samples were also superior for PCR and NGS performance, both in terms of quality control metrics and for variant calling. Critically we identified a greater number of genetic variants in the epidermal growth factor receptor gene when using PFPE samples and the Ingenuity® Variant Analysis pipeline. In summary, PFPE samples are adequate for histopathological diagnosis and suitable for the majority of existing laboratory tests. PAXgene® fixation is superior for DNA and RNA integrity, particularly in low‐yield samples and facilitates improved NGS performance, including the detection of actionable lung cancer mutations for precision medicine in lung cancer samples.
Statin use, candidate mevalonate pathway biomarkers, and colon cancer survival in a population-based cohort study
Background: Statin use after colorectal cancer diagnosis may improve survival but evidence from observational studies is conflicting. The anti-cancer effect of statins may be restricted to certain molecular subgroups. In this population-based cohort study, the interaction between p53 and 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGCR) expression, KRAS mutations, and the association between statin use and colon cancer survival was assessed. Methods: The cohort consisted of 740 stage II and III colon cancer patients diagnosed between 2004 and 2008. Statin use was determined through clinical note review. Tissue blocks were retrieved to determine immunohistochemical expression of p53 and HMGCR in tissue microarrays and the presence of KRAS mutations in extracted DNA. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for colorectal cancer-specific and overall survival. Results: Statin use was not associated with improved cancer-specific survival in this cohort (HR=0.91, 95% CI 0.64–1.28). Statin use was also not associated with improved survival when the analyses were stratified by tumour p53 (wild-type HR=1.31, 95% CI 0.67–2.56 vs aberrant HR=0.80, 95% CI 0.52–1.24), HMGCR (HMGCR-high HR=0.69, 95% CI 0.40–1.18 vs HMGCR-low HR=1.10, 95% CI 0.66–1.84), and KRAS (wild-type HR=0.73, 95% CI 0.44–1.19 vs mutant HR=1.21, 95% CI 0.70–2.21) status. Conclusions: Statin use was not associated with improved survival either independently or when stratified by potential mevalonate pathway biomarkers in this population-based cohort of colon cancer patients.
Practical guide for the comparison of two next-generation sequencing systems for solid tumour analysis in a universal healthcare system
AimsAlthough there have been excellent reports in the literature of validating next-generation sequencing, comparisons between two systems are not often published due to cost and time. We set out to establish that targetable mutations could be reliably detected with different gene panels and different chemistries using a common bioinformatics pipeline for meaningful comparisons to be made.MethodsAfter running selected formalin-fixed, paraffin-embedded samples through QPCR, Sanger sequencing and the 50 gene hotspot v2 panel from Life Technologies to determine standard-of-care variants, we compared the Oncomine panel from Life Technologies performed on a Personal Genome Machine (PGM) and the eight-gene actionable panel from Qiagen performed on a MiSeq platform. We used a common bioinformatics program following the creation of respective VCF files.ResultsBoth panels were accurate to above 90%, the actionable panel workflow was easier to perform but the lowest effective starting DNA load was obtained on the Oncomine workflow at 4 ng. Such minimal DNA can help with samples where there is limited material such as those for lung cancer molecular studies. We also discuss gene panel content and propose that increasing the gene profile of a panel will not benefit clinical laboratories where standard-of-care testing is all that is required.ConclusionsOnce recognised, it may be cost-effective for such laboratories to begin validation with an appropriate bioinformatics pipeline for targeted multigene hotspot molecular testing.
Effect of Temperature on Cystic Fibrosis Lung Disease and Infections: A Replicated Cohort Study
Progressive lung disease accounts for the majority of morbidity and mortality observed in cystic fibrosis (CF). Beyond secondhand smoke exposure and socio-economic status, the effect of specific environmental factors on CF lung function is largely unknown. Multivariate regression was used to assess correlation between specific environmental factors, the presence of pulmonary pathogens, and variation in lung function using subjects enrolled in the U.S. CF Twin and Sibling Study (CFTSS: n = 1378). Significant associations were tested for replication in the U.S. CF Foundation Patient Registry (CFF: n = 16439), the Australian CF Data Registry (ACFDR: n = 1801), and prospectively ascertained subjects from Australia/New Zealand (ACFBAL: n = 167). In CFTSS subjects, the presence of Pseudomonas aeruginosa (OR = 1.06 per °F; p<0.001) was associated with warmer annual ambient temperatures. This finding was independently replicated in the CFF (1.02; p<0.001), ACFDR (1.05; p = 0.002), and ACFBAL (1.09; p = 0.003) subjects. Warmer temperatures (-0.34 points per °F; p = 0.005) and public insurance (-6.43 points; p<0.001) were associated with lower lung function in the CFTSS subjects. These findings were replicated in the CFF subjects (temperature: -0.31; p<0.001; insurance: -9.11; p<0.001) and similar in the ACFDR subjects (temperature: -0.23; p = 0.057). The association between temperature and lung function was minimally influenced by P. aeruginosa. Similarly, the association between temperature and P. aeruginosa was largely independent of lung function. Ambient temperature is associated with prevalence of P. aeruginosa and lung function in four independent samples of CF patients from two continents.