Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"McIntire, Cameron D"
Sort by:
Physiological impacts of beech leaf disease across a gradient of symptom severity among understory American beech
2023
Beech leaf disease (BLD) damage is associated with the parasitic nematode Litylenchus crenatae ssp. mccannii . Foliar symptoms manifest as darkened or chlorotic galls in the interveinal portions in the leaf, which become leathery and crinkled under high severity of infection. Though nearly a decade has passed since the discovery of this disease, little is known regarding the impact of BLD on leaf function and physiology. This study assesses the variation in leaf gas exchange and physiological leaf traits among asymptomatic and BLD-infected leaves across a gradient of symptom severity within a natural forested stand in central Connecticut, USA. Leaves with BLD symptoms are found to have significantly reduced carbon assimilation and instantaneous water use efficiency, with increased levels of stomatal conductance as symptom severity progresses. Leaf response to light manipulation is also affected, with an increase in dark respiration and the light compensation point among banded and crinkled leaves. Additionally, BLD symptoms are found to have a significant influence on leaf water content, specific leaf area, and leaf nitrogen content. Relationships between gas exchange and these leaf traits yield linear correlations that are used to infer functional relationships impacted by the disease.
Journal Article
Allometric Relationships for Predicting Aboveground Biomass and Sapwood Area of Oneseed Juniper (Juniperus monosperma) Trees
2020
Across the semiarid ecosystems of the southwestern USA, there has been widespread encroachment of woody shrubs and trees including
species into former grasslands. Quantifying vegetation biomass in such ecosystems is important because semiarid ecosystems are thought to play an important role in the global land carbon (C) sink, and changes in plant biomass also have implications for primary consumers and potential bioenergy feedstock. Oneseed juniper (
) is common in desert grasslands and pinyon-juniper rangelands across the intermountain region of southwestern North America; however, there is limited information about the aboveground biomass (AGB) and sapwood area (SWA) for this species, causing uncertainties in estimates of C stock and transpiration fluxes. In this study, we report on canopy area (CA), stem diameter, maximum height, and biomass measurements from
trees sampled from central New Mexico. Dry biomass ranged between 0.4 kg and 625 kg, and cross-sectional SWA was measured on n = 200 stems using image analysis. We found a strong linear relationship between CA and AGB (r
= 0.96), with a similar slope to that observed in other juniper species, suggesting that this readily measured attribute is well suited for upscaling studies. There was a 9% bias between different approaches to measuring CA, indicating care should be taken to account for these differences to avoid systematic biases. We found equivalent stem diameter (ESD) was a strong predictor of biomass, but that existing allometric models underpredicted biomass in larger trees. We found SWA could be predicted from individual stem diameter with a power relationship, and that tree-level SWA should be estimated by summing the SWA predictions from individual stems rather than ESD. Our improved allometric models for
support more accurate and robust measurements of C storage and transpiration fluxes in
-dominated ecosystems.
Journal Article
Are Northeastern U.S. forests vulnerable to extreme drought?
2017
In the Northeastern U.S., drought is expected to increase in frequency over the next century, and therefore, the responses of trees to drought are important to understand. There is recent debate about whether land-use change or moisture availability is the primary driver of changes in forest species composition in this region. Some argue that fire suppression from the early twentieth century to present has resulted in an increase in shade-tolerant and pyrophobic tree species that are drought intolerant, while others suggest precipitation variability as a major driver of species composition. From this debate, an emerging hypothesis is that mesophication and increases in the abundance of mesophytic genera (e.g.,
Acer
,
Betula
, and
Fagus
) resulted in forests that are more vulnerable to drought. This review examines the published literature and factors that contribute to drought vulnerability of Northeastern U.S. forests. We assessed two key concepts related to drought vulnerability, including drought tolerance (ability to survive drought) and sensitivity (short-term responses to drought), with a focus on Northeastern U.S. species. We assessed drought-tolerance classifications for species, which revealed both consistencies and inconsistencies, as well as contradictions when compared to actual observations, such as higher mortality for drought-tolerant species. Related to drought sensitivity, recent work has focused on isohydric/anisohydric regulation of leaf water potential. However, based on the review of the literature, we conclude that drought sensitivity should be viewed in terms of multiple variables, including leaf abscission, stomatal sensitivity, turgor pressure, and dynamics of non-structural carbohydrates. Genera considered drought sensitive (e.g.,
Acer
,
Betula
, and
Liriodendron
) may actually be less prone to drought-induced mortality and dieback than previously considered because stomatal regulation and leaf abscission in these species are effective at preventing water potential from reaching critical thresholds during extreme drought. Independent of drought-tolerance classification, trees are prone to dieback and mortality when additional stressors are involved such as insect defoliation, calcium and magnesium deficiency, nitrogen saturation, and freeze-thaw events. Overall, our literature review shows that multiple traits associated with drought sensitivity and tolerance are important as species may rely on different mechanisms to prevent hydraulic failure and depleted carbon reserves that may lead to mortality.
Journal Article
Pathogen-induced defoliation impacts on transpiration, leaf gas exchange, and non-structural carbohydrate allocation in eastern white pine (Pinus strobus)
by
Huggett, Brett A
,
Dunn, Emma
,
Vadeboncoeur, Matthew A
in
Carbohydrates
,
Defoliation
,
Evergreen trees
2021
Key messagePathogen-induced defoliation resulted in a reduction in transpiration, an upregulation of photosynthesis in the early growing season, and no change in NSC reserves across stem, root, and foliar tissues.The defoliation of eastern white pine (Pinus strobus L.) by native fungi associated with white pine needle damage (WPND) can substantially reduce foliar area for much of the growing season in the northeastern United States. Chronic defoliations in the region are known to have slowed growth rates in symptomatic stands, but the physiological impacts of WPND as it relates to tree water use and carbon assimilation are largely unresolved. We investigated how the severity of WPND defoliation influences transpiration throughout the course of a growing season. We also assessed leaf-level gas exchange between defoliation severity classes and needle age over time. Finally, we compared concentrations of non-structural carbohydrates (NSC) between defoliation severity classes in five different tissue types over time. We found that trees experiencing a high-severity defoliation had 20% lower sap flux density compared to low-severity individuals. We found that rates of photosynthesis were significantly influenced by the needle age class and time of year, while instantaneous water use efficiency was higher across all needle age classes late in the growing season. Our findings suggest that the residual current-year foliage of high-severity defoliated trees compensated for the loss of mature second- and third-year foliage in the early portion of the growing season. This study found that soluble sugars and starch varied significantly over time and by tissue type, but defoliation severity had little effect on NSC concentrations. Together with reduced basal area increment in high-severity trees relative to low-severity trees, this indicates that WPND-affected trees are prioritizing NSC storage over secondary growth.
Journal Article
Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non-forest ecosystems
by
Boschetti, F
,
Anderson, K
,
Cunliffe, A. M
in
aboveground biomass
,
Aerial photography
,
allometry
2022
Non‐forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non‐forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low‐stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave‐one‐out cross‐validation of 3.9%. Biomass per‐unit‐of‐height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much‐needed information required to calibrate and validate the vegetation models and satellite‐derived biomass products that are essential to understand vulnerable and understudied non‐forested ecosystems around the globe. Working at sites across the globe, we used a standardized protocol to collect and analyse drone data in order to measure the size of many different plants in non‐forest ecosystems. These measurements of canopy height allowed the prediction of aboveground biomass and carbon storage of different plants accurately across the landscape. This new approach to measuring plants enables detailed monitoring of vegetation dynamics and responses to differences in climate or disturbance that can help us understand the changes happening in important and vulnerable non‐forest ecosystems around the world.
Journal Article
Drone-derived canopy height predicts biomass across non-forest ecosystems globally
2020
Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, yet are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely-sensed biomass products and are undersampled by in-situ monitoring. Current global change threats emphasise the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we assess whether canopy height inferred from drone photogrammetry allows the estimation of aboveground biomass (AGB) across low-stature plant species sampled through a global site network. We found mean canopy height is strongly predictive of AGB across species, demonstrating standardised photogrammetric approaches are generalisable across growth forms and environmental settings. Biomass per-unit-of-height was similar within, but different among, plant functional types. We find drone-based photogrammetry allows for monitoring of AGB across large spatial extents and can advance understanding of understudied and vulnerable non-forested ecosystems across the globe. Competing Interest Statement The authors have declared no competing interest.