Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
122 result(s) for "McKay, Paul F."
Sort by:
Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA
Self-amplifying RNA (saRNA) is a promising biotherapeutic tool that has been used as a vaccine against both infectious diseases and cancer. saRNA has been shown to induce protein expression for up to 60 days and elicit immune responses with lower dosing than messenger RNA (mRNA). Because saRNA is a large (~9500 nt), negatively charged molecule, it requires a delivery vehicle for efficient cellular uptake and degradation protection. Lipid nanoparticles (LNPs) have been widely used for RNA formulations, where the prevailing paradigm is to encapsulate RNA within the particle, including the first FDA-approved small-interfering siRNA therapy. Here, we compared LNP formulations with cationic and ionizable lipids with saRNA either on the interior or exterior of the particle. We show that LNPs formulated with cationic lipids protect saRNA from RNAse degradation, even when it is adsorbed to the surface. Furthermore, cationic LNPs deliver saRNA equivalently to particles formulated with saRNA encapsulated in an ionizable lipid particle, both in vitro and in vivo. Finally, we show that cationic and ionizable LNP formulations induce equivalent antibodies against HIV-1 Env gp140 as a model antigen. These studies establish formulating saRNA on the surface of cationic LNPs as an alternative to the paradigm of encapsulating RNA.
Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice
The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle (LNP) as a vaccine. We observe remarkably high and dose-dependent SARS-CoV-2 specific antibody titers in mouse sera, as well as robust neutralization of both a pseudo-virus and wild-type virus. Upon further characterization we find that the neutralization is proportional to the quantity of specific IgG and of higher magnitude than recovered COVID-19 patients. saRNA LNP immunizations induce a Th1-biased response in mice, and there is no antibody-dependent enhancement (ADE) observed. Finally, we observe high cellular responses, as characterized by IFN- γ production, upon re-stimulation with SARS-CoV-2 peptides. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic. Here, the authors develop a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle as a vaccine candidate and show induction of neutralization antibody titers in mice that are comparable to titers in convalescent sera of patients.
Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice
Several vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1 + CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies. Heterologous vaccination regimens for COVID-19 could be useful for example if there is a shortage of one vaccine type. Here, Spencer et al . show that heterologous vaccination with a self-amplifying RNA vaccine and an adenoviral vectored vaccine performs at least as well as the homologous vaccinations in mice.
Advances in HIV-1 Vaccine Development
An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection.
An Overview of Rift Valley Fever Vaccine Development Strategies
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that causes high fetal and neonatal mortality in ruminants and a mild to fatal hemorrhagic fever in humans. There are no licensed RVF vaccines for human use while for livestock, commercially available vaccines are all either live attenuated or inactivated and have undesirable characteristics. The live attenuated RVF vaccines are associated with teratogenicity and residual virulence in ruminants while the inactivated ones require multiple immunisations to induce and maintain protective immunity. Additionally, nearly all licensed RVF vaccines lack the differentiating infected from vaccinated animals (DIVA) property making them inappropriate for use in RVF nonendemic countries. To address these limitations, novel DIVA-compatible RVF vaccines with better safety and efficacy than the licensed ones are being developed, aided fundamentally by a better understanding of the molecular biology of the RVF virus and advancements in recombinant DNA technology. For some of these candidate RVF vaccines, sterilizing immunity has been demonstrated in the discovery/feasibility phase with minimal adverse effects. This review highlights the progress made to date in RVF vaccine research and development and discusses the outstanding research gaps.
TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes
The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4) stimulator glucopyranosyl lipid adjuvant (GLA-AF) or the TLR7/8 agonist resiquimod (R848) (alone and in combination) via the intradermal (ID), intranasal (IN) or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID) or R848 alone (IN). Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID), responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID). Specific IgG responses were measured at a distal mucosal site (vaginal), although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models.
Multi-component prime-boost Chlamydia trachomatis vaccination regimes induce antibody and T cell responses and accelerate clearance of infection in a non-human primate model
It is of international priority to develop a vaccine against sexually transmitted Chlamydia trachomatis infections to combat the continued global spread of the infection. The optimal immunization strategy still remains to be fully elucidated. The aim of this study was to evaluate immunization strategies in a nonhuman primate (NHP) model. Cynomolgus macaques ( Macaqua fascicularis ) were immunized following different multi-component prime-boost immunization-schedules and subsequently challenged with C. trachomatis SvD in the lower genital tract. The immunization antigens included the recombinant protein antigen CTH522 adjuvanted with CAF01 or aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5 MOMP and MVA MOMP). All antigen constructs were highly immunogenic raising significant systemic C. trachomatis -specific IgG responses. In particularly the CTH522 protein vaccinated groups raised a fast and strong pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP showed that all vaccinated groups, recognized epitopes near or within the variable domains (VD) of MOMP, with a consistent VD4 response in all animals. Furthermore, serum from all vaccinated groups were able to in vitro neutralize both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and ocular mucosa, which showed detectable levels of IgG. Vaccines also induced C. trachomatis- specific cell mediated responses, as shown by in vitro stimulation and intracellular cytokine staining of peripheral blood mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated groups established a multifunctional CD4 T cell response, whereas the DNA and Vector vaccinated groups also established a CD8 T cells response. Following vaginal challenge with C. trachomatis SvD, several of the vaccinated groups showed accelerated clearance of the infection, but especially the DNA group, boosted with CAF01 adjuvanted CTH522 to achieve a balanced CD4/CD8 T cell response combined with an IgG response, showed accelerated clearance of the infection.
Chlamydia trachomatis: Cell biology, immunology and vaccination
•Mechanisms of immune evasion employed byChlamydia trachomatis.•The innate and adaptive immune response to natural chlamydial infection.•History and timeline of vaccine efforts to protect againstChlamydiatrachomatis. Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and is associated with a number of severe disease complications. Current therapy options are successful at treating disease, but patients are left without protective immunity and do not benefit the majority asymptomatic patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that can prevent transmission and protect against symptomatic disease presentation. There are three key elements that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations, 2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of chlamydial immunity in animal models and in humans and characterise the key immune correlates of protection against infection. We discuss in detail the specific immune interactions involved in protection, with relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance. Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and failures in development so far. With insight from these three key elements of research, we suggest potential solutions for chlamydial vaccine development and promising avenues for further exploration.
Increasing human monoclonal antibody cloning efficiency with a whole-cell modified immunoglobulin-capture assay (mICA)
Expression cloning of fully human monoclonal antibodies (hmAbs) is seeing powerful utility in the field of vaccinology, especially for elucidating vaccine-induced B-cell responses and novel vaccine candidate antigen discovery. Precision of the hmAb cloning process relies on efficient isolation of hmAb-producing plasmablasts of interest. Previously, a novel immunoglobulin-capture assay (ICA) was developed, using single protein vaccine antigens, to enhance the pathogen-specific hmAb cloning output. Here, we report a novel modification of this single-antigen ICA using formalin-treated, fluorescently stained whole cell suspensions of the human bacterial invasive pathogens, Streptococcus pneumoniae and Neisseria meningitidis . Sequestration of IgG secreted by individual vaccine antigen-specific plasmablasts was achieved by the formation of an anti-CD45-streptavidin and biotin anti-IgG scaffold. Suspensions containing heterologous pneumococcal and meningococcal strains were then used to enrich for polysaccharide- and protein antigen-specific plasmablasts, respectively, during single cell sorting. Following application of the modified whole-cell ICA (mICA), ~61% (19/31) of anti-pneumococcal polysaccharide hmAbs were cloned compared to 14% (8/59) obtained using standard (non-mICA) methods – representing a ~4.4-fold increase in hmAb cloning precision. A more modest ~1.7-fold difference was obtained for anti-meningococcal vaccine hmAb cloning; ~88% of hmAbs cloned via mICA versus ~53% cloned via the standard method were specific for a meningococcal surface protein. VDJ sequencing revealed that cloned hmAbs reflected an anamnestic response to both pneumococcal and meningococcal vaccines; diversification within hmAb clones occurred by positive selection for replacement mutations. Thus, we have shown successful utilization of whole bacterial cells in the ICA protocol enabling isolation of hmAbs targeting multiple disparate epitopes, thereby increasing the power of approaches such as reverse vaccinology 2.0 (RV 2.0) for bacterial vaccine antigen discovery.
Presentation of antigen on extracellular vesicles using transmembrane domains from viral glycoproteins for enhanced immunogenicity
A vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane‐bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV‐loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV‐bound GFP (EV‐GFP) would enhance immune induction. Our data showed that GFP fused to viral TMs was successfully loaded onto the surface of EVs. In addition, GFP‐bound EVs were predominantly associated with the exosome marker CD81. Immunogenicity study with EV‐GFP‐producing plasmids in mice demonstrated that antigen‐specific IgG and IgA were significantly increased in EV‐GFP groups, compared to soluble and intracellular GFP groups. Similarly, GFP‐specific T cell response‐related cytokines produced by antigen‐stimulated splenocytes were also enhanced in mice immunized with EV‐GFP constructs. Immunogenicity study with purified soluble GFP and GFP EVs further confirmed the immune enhancement property of EV‐GFP in mice. In vitro uptake assays indicated that EV‐GFP was more efficiently taken up than soluble GFP by mouse splenocytes and such uptake was B cell preferential. Taken together, our data indicate that viral TMs can efficiently load antigens onto the EV surface, and that EV‐bound antigen enhances both humoral and cell‐mediated antigen‐specific responses.