Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
130 result(s) for "McLean, Angela R"
Sort by:
Persistent HIV-1 replication maintains the tissue reservoir during therapy
Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy. By examining viral sequences in lymphoid tissue from three HIV-1-infected individuals receiving drug therapy, the authors find phylogenetic evidence for ongoing virus replication, suggesting that the antiretroviral drug concentration in the lymphoid tissue is insufficient to fully suppress the virus; using a mathematical model, they further explain why drug resistance does not necessarily arise as a result. HIV-1 persistence during drug therapy Combinations of antiretroviral drugs can reduce viral replication and reduce viral RNA to undetectable levels in blood in HIV-1 infection, but it is not clear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Steven Wolinsky and colleagues examined viral sequences in lymphoid tissue from three HIV-1 infected individuals receiving drug therapy. They find phylogenetic evidence for ongoing virus replication, suggesting that the antiretroviral drug concentration in the lymphoid tissue is insufficient to fully suppress the virus. They explain using a mathematical model why drug resistance does not necessarily arise under conditions where drug concentrations are insufficient to fully block virus replication.
Evolution, human-microbe interactions, and life history plasticity
A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live).
A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators
There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
Mapping social distancing measures to the reproduction number for COVID-19
In the absence of a vaccine, severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) transmission has been controlled by preventing person-to-person interactions via social distancing measures. In order to re-open parts of society, policy-makers need to consider how combinations of measures will affect transmission and understand the trade-offs between them. We use age-specific social contact data, together with epidemiological data, to quantify the components of the COVID-19 reproduction number. We estimate the impact of social distancing policies on the reproduction number by turning contacts on and off based on context and age. We focus on the impact of re-opening schools against a background of wider social distancing measures. We demonstrate that pre-collected social contact data can be used to provide a time-varying estimate of the reproduction number (𝑅). We find that following lockdown (when 𝑅=0.7, 95% CI 0.6, 0.8), opening primary schools has a modest impact on transmission (𝑅 = 0.89, 95% CI 0.82−0.97) as long as other social interactions are not increased. Opening secondary and primary schools is predicted to have a larger impact (𝑅 = 1.22, 95% CI 1.02−1.53). Contact tracing and COVID security can be used to mitigate the impact of increased social mixing to some extent; however, social distancing measures are still required to control transmission. Our approach has been widely used by policy-makers to project the impact of social distancing measures and assess the trade-offs between them. Effective social distancing, contact tracing and COVID security are required if all age groups are to return to school while controlling transmission. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.
A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators
A summary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a ‘restatement') intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc. R. Soc. B 281, 20140558. (doi:10.1098/rspb.2014.0558)) and the subject continues to be an area of very active research and high policy relevance.
A restatement of the natural science evidence base concerning the health effects of low-level ionizing radiation
Exposure to ionizing radiation is ubiquitous, and it is well established that moderate and high doses cause ill-health and can be lethal. The health effects of low doses or low dose-rates of ionizing radiation are not so clear. This paper describes a project which sets out to summarize, as a restatement, the natural science evidence base concerning the human health effects of exposure to low-level ionizing radiation. A novel feature, compared to other reviews, is that a series of statements are listed and categorized according to the nature and strength of the evidence that underpins them. The purpose of this restatement is to provide a concise entrée into this vibrant field, pointing the interested reader deeper into the literature when more detail is needed. It is not our purpose to reach conclusions on whether the legal limits on radiation exposures are too high, too low or just right. Our aim is to provide an introduction so that non-specialist individuals in this area (be they policy-makers, disputers of policy, health professionals or students) have a straightforward place to start. The summary restatement of the evidence and an extensively annotated bibliography are provided as appendices in the electronic supplementary material.
Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence
It is widely believed that epidemics in new hosts diminish in virulence over time, with natural selection favoring pathogens that cause minimal disease. However, a tradeoff frequently exists between high virulence shortening host survival on the one hand but allowing faster transmission on the other. This is the case in HIV infection, where high viral loads increase transmission risk per coital act but reduce host longevity. We here investigate the impact on HIV virulence of HIV adaptation to HLA molecules that protect against disease progression, such as HLA-B*57 and HLA-B*58:01. We analyzed cohorts in Botswana and South Africa, two countries severely affected by the HIV epidemic. In Botswana, where the epidemic started earlier and adult seroprevalence has been higher, HIV adaptation to HLA including HLA-B*57/58:01 is greater compared with South Africa ( P = 7 × 10 ⁻⁸²), the protective effect of HLA-B*57/58:01 is absent ( P = 0.0002), and population viral replicative capacity is lower ( P = 0.03). These data suggest that viral evolution is occurring relatively rapidly, and that adaptation of HIV to the most protective HLA alleles may contribute to a lowering of viral replication capacity at the population level, and a consequent reduction in HIV virulence over time. The potential role in this process played by increasing antiretroviral therapy (ART) access is also explored. Models developed here suggest distinct benefits of ART, in addition to reducing HIV disease and transmission, in driving declines in HIV virulence over the course of the epidemic, thereby accelerating the effects of HLA-mediated viral adaptation. Significance Factors that influence the virulence of HIV are of direct relevance to ongoing efforts to contain, and ultimately eradicate, the HIV epidemic. We here investigate in Botswana and South Africa, countries severely affected by HIV, the impact on HIV virulence of adaptation of HIV to protective HLA alleles such as HLA-B*57. In Botswana, where the epidemic started earlier and reached higher adult seroprevalence than in South Africa, HIV replication capacity is lower. HIV is also better adapted to HLA-B*57, which in Botswana has no protective effect, in contrast to its impact in South Africa. Modelling studies indicate that increasing antiretroviral therapy access may also contribute to accelerated declines in HIV virulence over the coming decades.
Increased T cell trafficking as adjunct therapy for HIV-1
Although antiretroviral drug therapy suppresses human immunodeficiency virus-type 1 (HIV-1) to undetectable levels in the blood of treated individuals, reservoirs of replication competent HIV-1 endure. Upon cessation of antiretroviral therapy, the reservoir usually allows outgrowth of virus and approaches to targeting the reservoir have had limited success. Ongoing cycles of viral replication in regions with low drug penetration contribute to this persistence. Here, we use a mathematical model to illustrate a new approach to eliminating the part of the reservoir attributable to persistent replication in drug sanctuaries. Reducing the residency time of CD4 T cells in drug sanctuaries renders ongoing replication unsustainable in those sanctuaries. We hypothesize that, in combination with antiretroviral drugs, a strategy to orchestrate CD4 T cell trafficking could contribute to a functional cure for HIV-1 infection.
Mapping the drivers of within-host pathogen evolution using massive data sets
Differences among hosts, resulting from genetic variation in the immune system or heterogeneity in drug treatment, can impact within-host pathogen evolution. Genetic association studies can potentially identify such interactions. However, extensive and correlated genetic population structure in hosts and pathogens presents a substantial risk of confounding analyses. Moreover, the multiple testing burden of interaction scanning can potentially limit power. We present a Bayesian approach for detecting host influences on pathogen evolution that exploits vast existing data sets of pathogen diversity to improve power and control for stratification. The approach models key processes, including recombination and selection, and identifies regions of the pathogen genome affected by host factors. Our simulations and empirical analysis of drug-induced selection on the HIV-1 genome show that the method recovers known associations and has superior precision-recall characteristics compared to other approaches. We build a high-resolution map of HLA-induced selection in the HIV-1 genome, identifying novel epitope-allele combinations. Various host factors may impact within-host pathogen evolution. Here, the authors develop a Bayesian approach for identifying host-pathogen interactions using large data sets of pathogen diversity, and apply it to investigate HLA-induced selection in the HIV-1 genome.
Structured Observations Reveal Slow HIV-1 CTL Escape
The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years.