Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
416 result(s) for "McLean, Mary A."
Sort by:
Imaging breast cancer using hyperpolarized carbon-13 MRI
Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2−), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2− invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.
Deuterium metabolic imaging and hyperpolarized 13C-MRI of the normal human brain at clinical field strength reveals differential cerebral metabolism
Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1–2 h after oral administration of [6,6′-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1–13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.
Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer
Hyperpolarised magnetic resonance imaging (HP  13 C-MRI) is an emerging clinical technique to detect [1- 13 C]lactate production in prostate cancer (PCa) following intravenous injection of hyperpolarised [1- 13 C]pyruvate. Here we differentiate clinically significant PCa from indolent disease in a low/intermediate-risk population by correlating [1- 13 C]lactate labelling on MRI with the percentage of Gleason pattern 4 (%GP4) disease. Using immunohistochemistry and spatial transcriptomics, we show that HP  13 C-MRI predominantly measures metabolism in the epithelial compartment of the tumour, rather than the stroma. MRI-derived tumour [1- 13 C]lactate labelling correlated with epithelial mRNA expression of the enzyme lactate dehydrogenase (LDHA and LDHB combined), and the ratio of lactate transporter expression between the epithelial and stromal compartments (epithelium-to-stroma MCT4). We observe similar changes in MCT4, LDHA, and LDHB between tumours with primary Gleason patterns 3 and 4 in an independent TCGA cohort. Therefore, HP  13 C-MRI can metabolically phenotype clinically significant disease based on underlying metabolic differences in the epithelial and stromal tumour compartments. Your paper will be accompanied by the following editor’s summary. Please let us know if there are any inaccuracies: ‘Hyperpolarised ¹³C-MRI is used to image cancer metabolism. Here the authors use this technique in prostate cancer and show that it can differentiate distinct disease states.
Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations
Objectives To assess the feasibility of the mono-exponential, bi-exponential and stretched-exponential models in evaluating response of breast tumours to neoadjuvant chemotherapy (NACT) at 3 T. Methods Thirty-six female patients (median age 53, range 32–75 years) with invasive breast cancer undergoing NACT were enrolled for diffusion-weighted MRI (DW-MRI) prior to the start of treatment. For assessment of early response, changes in parameters were evaluated on mid-treatment MRI in 22 patients. DW-MRI was performed using eight b values (0, 30, 60, 90, 120, 300, 600, 900 s/mm 2 ). Apparent diffusion coefficient (ADC), tissue diffusion coefficient ( D t ), vascular fraction (ƒ), distributed diffusion coefficient (DDC) and alpha (α) parameters were derived. Then t tests compared the baseline and changes in parameters between response groups. Repeatability was assessed at inter- and intraobserver levels. Results All patients underwent baseline MRI whereas 22 lesions were available at mid-treatment. At pretreatment, mean diffusion coefficients demonstrated significant differences between groups ( p  < 0.05). At mid-treatment, percentage increase in ADC and DDC showed significant differences between responders (49 % and 43 %) and non-responders (21 % and 32 %) ( p  = 0.03, p  = 0.04). Overall, stretched-exponential parameters showed excellent repeatability. Conclusion DW-MRI is sensitive to baseline and early treatment changes in breast cancer using non-mono-exponential models, and the stretched-exponential model can potentially monitor such changes. Key points • Baseline diffusion coefficients demonstrated significant differences between complete pathological responders and non-responders. • Increase in ADC and DDC at mid-treatment can discriminate responders and non-responders. • The ƒ fraction at mid-treatment decreased in responders whereas increased in non-responders. • The mono- and stretched-exponential models showed excellent inter- and intrarater repeatability. • Treatment effects can potentially be assessed by non-mono-exponential diffusion models.
Metabolic imaging across scales reveals distinct prostate cancer phenotypes
Hyperpolarised magnetic resonance imaging (HP- 13 C-MRI) has shown promise as a clinical tool for detecting and characterising prostate cancer. Here we use a range of spatially resolved histological techniques to identify the biological mechanisms underpinning differential [1- 13 C]lactate labelling between benign and malignant prostate, as well as in tumours containing cribriform and non-cribriform Gleason pattern 4 disease. Here we show that elevated hyperpolarised [1- 13 C]lactate signal in prostate cancer compared to the benign prostate is primarily driven by increased tumour epithelial cell density and vascularity, rather than differences in epithelial lactate concentration between tumour and normal. We also demonstrate that some tumours of the cribriform subtype may lack [1- 13 C]lactate labelling, which is explained by lower epithelial lactate dehydrogenase expression, higher mitochondrial pyruvate carrier density, and increased lipid abundance compared to lactate-rich non-cribriform lesions. These findings highlight the potential of combining spatial metabolic imaging tools across scales to identify clinically significant metabolic phenotypes in prostate cancer. Metabolic imaging offers promise for improving the characterisation of prostate cancer phenotypes of varying clinical significance. Here, the authors show distinct metabolic features of cribriform and non-cribriform lesions using a variety of imaging techniques across scales.
Relationship Between Brain Glutamate Levels and Clinical Outcome in Individuals at Ultra High Risk of Psychosis
Alterations in brain glutamate levels may be associated with psychosis risk, but the relationship to clinical outcome in at-risk individuals is unknown. Glutamate concentration was measured in the left thalamus and anterior cingulate cortex (ACC) using 3-Tesla proton magnetic resonance spectroscopy in 75 participants at ultra high risk (UHR) of psychosis and 56 healthy controls. The severity of attenuated positive symptoms and overall functioning were assessed. Measures were repeated in 51 UHR and 33 Control subjects after a mean of 18 months. UHR subjects were allocated to either remission (no longer meeting UHR criteria) or non-remission (meeting UHR or psychosis criteria) status on follow-up assessment. Thalamic glutamate levels at presentation were lower in the UHR non-remission (N=29) compared with the remission group (N=22) (t(49)=3.03; P=0.004), and were associated with an increase in the severity of total positive symptoms over time (r=-0.33; df=47; P=0.02), most notably abnormal thought content (r=-0.442; df=47; P=0.003). In the UHR group, ACC glutamate levels were lower at follow-up compared with baseline (F(80)=4.28; P=0.04). These findings suggest that measures of brain glutamate function may be useful as predictors of clinical outcome in individuals at high risk of psychosis.
Investigating the relationship between diffusion kurtosis tensor imaging (DKTI) and histology within the normal human brain
Measurements of water diffusion with MRI have been used as a biomarker of tissue microstructure and heterogeneity. In this study, diffusion kurtosis tensor imaging (DKTI) of the brain was undertaken in 10 healthy volunteers at a clinical field strength of 3 T. Diffusion and kurtosis metrics were measured in regions-of-interest on the resulting maps and compared with quantitative analysis of normal post-mortem tissue histology from separate age-matched donors. White matter regions showed low diffusion (0.60 ± 0.04 × 10 –3 mm 2 /s) and high kurtosis (1.17 ± 0.06), consistent with a structured heterogeneous environment comprising parallel neuronal fibres. Grey matter showed intermediate diffusion (0.80 ± 0.02 × 10 –3 mm 2 /s) and kurtosis (0.82 ± 0.05) values. An important finding is that the subcortical regions investigated (thalamus, caudate and putamen) showed similar diffusion and kurtosis properties to white matter. Histological staining of the subcortical nuclei demonstrated that the predominant grey matter was permeated by small white matter bundles, which could account for the similar kurtosis to white matter. Quantitative histological analysis demonstrated higher mean tissue kurtosis and vector standard deviation values for white matter (1.08 and 0.81) compared to the subcortical regions (0.34 and 0.59). Mean diffusion on DKTI was positively correlated with tissue kurtosis (r = 0.82, p < 0.05) and negatively correlated with vector standard deviation (r = -0.69, p < 0.05). This study demonstrates how DKTI can be used to study regional structural variations in the cerebral tissue microenvironment and could be used to probe microstructural changes within diseased tissue in the future.
Multiarm, non-randomised, single-centre feasibility study—investigation of the differential biology between benign and malignant renal masses using advanced magnetic resonance imaging techniques (IBM-Renal): protocol
IntroductionLocalised renal masses are an increasing burden on healthcare due to the rising number of cases. However, conventional imaging cannot reliably distinguish between benign and malignant renal masses, and renal mass biopsies are unable to characterise the entirety of the tumour due to sampling error, which may lead to delayed treatment or overtreatment. There is an unmet clinical need to develop novel imaging techniques to characterise renal masses more accurately. Renal tumours demonstrate characteristic metabolic reprogramming, and novel MRI methods have the potential to detect these metabolic perturbations, which may therefore aid accurate characterisation. Here, we present our study protocol for the investigation of the differential biology of benign and malignant renal masses using advanced MRI techniques (IBM-Renal).Methods and analysisIBM-Renal is a multiarm, single-centre, non-randomised, feasibility study with the aim to provide preliminary evidence for the potential role of the novel MRI techniques to phenotype localised renal lesions. 30 patients with localised renal masses will be recruited to three imaging arms, with 10 patients in each: (1) hyperpolarised [1-13C]-pyruvate MRI, (2) deuterium metabolic imaging (DMI) and (3) sodium MRI. The diagnosis will be made on samples acquired at biopsy or at surgery. The primary objective is the technical development of the novel MRI techniques, with the ultimate aim to understand whether these can identify differences between benign and malignant tumours, while the secondary objectives aim to assess how complementary the techniques are, and if they provide additional information. The exploratory objective is to link imaging findings with clinical data and molecular analyses for the biological validation of the novel MRI techniques.Ethics and disseminationThis study was ethically approved (UK REC HRA: 22/EE/0136; current protocol version 2.1 dated 11 August 2022). The plans for dissemination include presentations at conferences, publications in scientific journals, a doctoral thesis and patient and public involvement.Trial registration numberNCT06016075.
Assessment of early response to neoadjuvant chemotherapy in multi-site high-grade serous ovarian cancer using hyperpolarized-13C MRI
Background To evaluate the capability of hyperpolarized [1- 13 C] pyruvate MRI to predict pathologic response to neoadjuvant treatment in multi-site abdominopelvic disease of high-grade serous ovarian cancer (HGSOC) patients and to compare 13 C MRI and [ 18 F]-FDG PET/CT measurements for detecting early treatment response. We recruited eight patients with HGSOC in this prospective study who underwent 13 C MRI and [ 18 F]-FDG PET/CT before and after the first cycle of neoadjuvant chemotherapy treatment (NACT). Imaging parameters were compared with clinical and histophatologic parameters. Results We demonstrate here that 13 C MRI of hyperpolarized [1- 13 C]pyruvate metabolism in multiple abdominal metastases resulted in rapid labeling of the endogenous tumor lactate pool. The rate of labeling was similar between the different anatomical disease sites and independent of tumor volume. The apparent rate constant describing exchange of 13 C label between pyruvate and lactate ( k PL ) was positively correlated with PET standard uptake values (SUV max ) for [ 18 F]-FDG in metastatic tumor deposits in the ovary/pelvis (R = 0.471, P  = 0.02). Decreased lactate labeling could be detected after the first cycle of neoadjuvant chemotherapy and was associated with pathological response. There was no overall decrease in lactate labeling in a single patient who lacked a complete histopathologic response. k PL was associated with cancer tissue LDHA concentration (rho = 0.641; P  = 0.02). Conclusion This exploratory study demonstrates the potential of 13 C MRI measurements for assessing early response to neoadjuvant chemotherapy in patients with HGSOC.