Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Mcmichael, Joshua F"
Sort by:
Mutational landscape and significance across 12 major cancer types
The Cancer Genome Atlas (TCGA) has used the latest sequencing and analysis methods to identify somatic variants across thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/carcinogen influences, and DNA repair defects. Using the integrated data sets, we identified 127 significantly mutated genes from well-known (for example, mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, Wnt/β-catenin and receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in these significantly mutated genes varies across tumour types; most tumours have two to six, indicating that the number of driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for developing new diagnostics and individualizing cancer treatment. As part of The Cancer Genome Atlas Pan-Cancer effort, data analysis for point mutations and small indels from 3,281 tumours and 12 tumour types is presented; among the findings are 127 significantly mutated genes from cellular processes with both established and emerging links in cancer, and an indication that the number of driver mutations required for oncogenesis is relatively small. Genomic landscape of twelve tumour types As part of The Cancer Genome Atlas Pan-Cancer project, these authors present data analysis for point mutations and small indels from more than 3,000 tumours representing 12 tumour types. Among the findings are 127 significantly mutated genes from cellular processes with both established and emerging links to cancer, and an indication that the number of driver mutations required for oncogenesis is relatively small. Additional analyses also identify genes with significant impact on survival and a likely temporal order of mutational events during tumorigenesis.
Expanding the computational toolbox for mining cancer genomes
Key Points High-throughput sequencing of cancer genomes, exomes and transcriptomes has enabled the identification of many novel somatic aberrations, and has provided new insights into cancer biology and new therapeutic targets. Computational and statistical tools are necessary for interpreting the large and complex data sets that result from high-throughput sequencing approaches. Mature software for detecting single-nucleotide variants, insertions and deletions, copy-number aberrations, structural variants and gene fusions in cancer genomes are now available. Additional challenges remain in increasing the sensitivity and specificity of these algorithms. Computational techniques are essential for assigning priority to somatic aberrations that are likely to be functional for further experimental validation. Two common approaches are to predict functional impact of individual mutations using prior biological knowledge and to identify recurrently mutated genes, pathways and networks across many samples. Algorithms to infer the clonal structure and evolutionary history of a tumour from ultra-deep sequencing data have recently been introduced. Applications of these techniques have shown that minority mutations in primary tumours may increase to majority in relapse or metastasis. Sequencing of cancer genomes has shown a wide range of specialized mutational processes, including kataegis, chromothripsis and chromoplexy that result in rapid genomic changes and punctuated tumour evolution. The field of cancer genomics has been transformed by recent advances in sequencing and the development of new computational methods. This Review outlines the available cancer genomics software and describes recent insights gained from the application of these tools. High-throughput DNA sequencing has revolutionized the study of cancer genomics with numerous discoveries that are relevant to cancer diagnosis and treatment. The latest sequencing and analysis methods have successfully identified somatic alterations, including single-nucleotide variants, insertions and deletions, copy-number aberrations, structural variants and gene fusions. Additional computational techniques have proved useful for defining the mutations, genes and molecular networks that drive diverse cancer phenotypes and that determine clonal architectures in tumour samples. Collectively, these tools have advanced the study of genomic, transcriptomic and epigenomic alterations in cancer, and their association to clinical properties. Here, we review cancer genomics software and the insights that have been gained from their application.
Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools ( www.regtools.org ), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53 , CDKN2A , and B2M , and other genes. Analysing the regulatory consequences of mutations and splice variants at large scale in cancer requires efficient computational tools. Here, the authors develop RegTools, a software package that can identify splice-associated variants from large-scale genomics and transcriptomics data with efficiency and flexibility.
DoCM: a database of curated mutations in cancer
Large-scale cancer genomics discovery projects such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have systematically characterized the molecular lesions in human cancer genomes, thereby laying the foundation for precision cancer medicine. However, a curated set of somatic variants with established relevance to cancer biology is essential for clinical annotation and for use in computational data analysis. We have created a database of curated mutations in cancer.
Systematic discovery of complex insertions and deletions in human cancers
The authors develop a new method to mine genomic cancer data to uncover complex indels. These simultaneous deletions and insertions have been over-looked by previous sequencing data analysis methods, and the Pindel-C algorithm uncovers new information about their potential contribution to tumorigenesis. Complex insertions and deletions (indels) are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here we present a systematic analysis of somatic complex indels in the coding sequences of samples from over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer-associated genes (such as PIK3R1 , TP53 , ARID1A , GATA3 and KMT2D ) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or misannotated (17.6%) in previous reports of 2,199 samples. In-frame complex indels are enriched in PIK3R1 and EGFR , whereas frameshifts are prevalent in VHL , GATA3 , TP53 , ARID1A , PTEN and ATRX . Furthermore, complex indels display strong tissue specificity (such as VHL in kidney cancer samples and GATA3 in breast cancer samples). Finally, structural analyses support findings of previously missed, but potentially druggable, mutations in the EGFR , MET and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research.
Clonal Architectures and Driver Mutations in Metastatic Melanomas
To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS) and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1), protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT), as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2). Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3' base of dipyrimidine sequences while one patient (MEL9) with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma.
Age-related mutations associated with clonal hematopoietic expansion and malignancies
Systematic analysis of cancer-associated mutations in the blood cells of healthy individuals. Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. The Cancer Genome Atlas (TCGA) provides a unique resource for comprehensive discovery of mutations and genes in blood that may contribute to the clonal expansion of hematopoietic stem/progenitor cells. Here, we analyzed blood-derived sequence data from 2,728 individuals from TCGA and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia and/or lymphoma-associated genes, and nine were recurrently mutated ( DNMT3A , TET2 , JAK2 , ASXL1 , TP53 , GNAS , PPM1D , BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5–6% of people older than 70 years) contain mutations that may represent premalignant events that cause clonal hematopoietic expansion.
Standard operating procedure for curation and clinical interpretation of variants in cancer
Manually curated variant knowledgebases and their associated knowledge models are serving an increasingly important role in distributing and interpreting variants in cancer. These knowledgebases vary in their level of public accessibility, and the complexity of the models used to capture clinical knowledge. CIViC (Clinical Interpretation of Variants in Cancer - www.civicdb.org ) is a fully open, free-to-use cancer variant interpretation knowledgebase that incorporates highly detailed curation of evidence obtained from peer-reviewed publications and meeting abstracts, and currently holds over 6300 Evidence Items for over 2300 variants derived from over 400 genes. CIViC has seen increased adoption by, and also undertaken collaboration with, a wide range of users and organizations involved in research. To enhance CIViC’s clinical value, regular submission to the ClinVar database and pursuit of other regulatory approvals is necessary. For this reason, a formal peer reviewed curation guideline and discussion of the underlying principles of curation is needed. We present here the CIViC knowledge model, standard operating procedures (SOP) for variant curation, and detailed examples to support community-driven curation of cancer variants.
The Human Pangenome Project: a global resource to map genomic diversity
The human reference genome is the most widely used resource in human genetics and is due for a major update. Its current structure is a linear composite of merged haplotypes from more than 20 people, with a single individual comprising most of the sequence. It contains biases and errors within a framework that does not represent global human genomic variation. A high-quality reference with global representation of common variants, including single-nucleotide variants, structural variants and functional elements, is needed. The Human Pangenome Reference Consortium aims to create a more sophisticated and complete human reference genome with a graph-based, telomere-to-telomere representation of global genomic diversity. Here we leverage innovations in technology, study design and global partnerships with the goal of constructing the highest-possible quality human pangenome reference. Our goal is to improve data representation and streamline analyses to enable routine assembly of complete diploid genomes. With attention to ethical frameworks, the human pangenome reference will contain a more accurate and diverse representation of global genomic variation, improve gene–disease association studies across populations, expand the scope of genomics research to the most repetitive and polymorphic regions of the genome, and serve as the ultimate genetic resource for future biomedical research and precision medicine. The Human Pangenome Reference Consortium aims to offer the highest quality and most complete human pangenome reference that provides diverse genomic representation across human populations.
Integrative omics analyses broaden treatment targets in human cancer
Background Although large-scale, next-generation sequencing (NGS) studies of cancers hold promise for enabling precision oncology, challenges remain in integrating NGS with clinically validated biomarkers. Methods To overcome such challenges, we utilized the Database of Evidence for Precision Oncology (DEPO) to link druggability to genomic, transcriptomic, and proteomic biomarkers. Using a pan-cancer cohort of 6570 tumors, we identified tumors with potentially druggable biomarkers consisting of drug-associated mutations, mRNA expression outliers, and protein/phosphoprotein expression outliers identified by DEPO. Results Within the pan-cancer cohort of 6570 tumors, we found that 3% are druggable based on FDA-approved drug-mutation interactions in specific cancer types. However, mRNA/phosphoprotein/protein expression outliers and drug repurposing across cancer types suggest potential druggability in up to 16% of tumors. The percentage of potential drug-associated tumors can increase to 48% if we consider preclinical evidence. Further, our analyses showed co-occurring potentially druggable multi-omics alterations in 32% of tumors, indicating a role for individualized combinational therapy, with evidence supporting mTOR/PI3K/ESR1 co-inhibition and BRAF/AKT co-inhibition in 1.6 and 0.8% of tumors, respectively. We experimentally validated a subset of putative druggable mutations in BRAF identified by a protein structure-based computational tool. Finally, analysis of a large-scale drug screening dataset lent further evidence supporting repurposing of drugs across cancer types and the use of expression outliers for inferring druggability. Conclusions Our results suggest that an integrated analysis platform can nominate multi-omics alterations as biomarkers of druggability and aid ongoing efforts to bring precision oncology to patients.