Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
34 result(s) for "Mešić, Armin"
Sort by:
Mycophilic or Mycophobic? Legislation and Guidelines on Wild Mushroom Commerce Reveal Different Consumption Behaviour in European Countries
Mycophiles forage for and pick vast quantities of a wide variety of wild mushroom species. As a result, mushroom intoxications are comparatively frequent in such countries with mycophiles. Thus, national governments are forced to release guidelines or enact legislation in order to ensure the safe commerce of wild mushrooms due to food safety concerns. It is in these guidelines and laws that one can observe whether a country is indeed mycophobic or mycophilic. Furthermore, these laws and guidelines provide valuable information on mushroom preferences and on the consumption habits of each country. As such we were interested in the questions as to whether mushroom consumption behaviour was different within Europe, and if it was possible to discover the typical or distinctive culinary preferences of Slavic or Romanic speaking people, people from special geographical regions or from different zones. This work is based on the analysis of edible mushroom lists available in specific guidelines or legislation related to the consumption and commerce of mushrooms in 27 European countries. The overall diversity of edible mushrooms authorised to be commercialised in Europe is very high. However, only 60 out of a total 268 fungal species can be cultivated. This highlights the importance of guidelines or legislation for the safe commerce of wild mushrooms. The species richness and composition of the mushrooms listed for commerce is very heterogeneous within Europe. The consumption behaviour is not only language-family-related, but is strongly influenced by geographical location and neighbouring countries. Indicator species were detected for different European regions; most of them are widespread fungi, and thus prove culture-specific preferences for these mushrooms. Our results highlight tradition and external input such as trade and cultural exchange as strong factors shaping mushroom consumption behaviour.
Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen
Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.
Associations Between Indoor Fungal Community Structures and Environmental Factors: Insights from the Evidence-Driven Indoor Air-Quality Improvement Study
Indoor fungal communities, found in household dust, significantly influence indoor air quality and health. These communities are shaped by environmental, socioeconomic, and household factors. However, studies on indoor mycobiomes, particularly in Croatia, remain limited. This study investigates the relationship between environmental and household factors and indoor fungal communities, focusing on their diversity, composition, and potential health impacts in Croatian households. Dust samples from 66 Croatian households were analyzed using fungal ITS sequencing. Statistical analyses, including alpha diversity measures, were conducted to evaluate the influence of variables such as pet ownership, number of siblings, and cleaning habits on fungal diversity and abundance. Dominant genera included Malassezia, Cladosporium, and the family Didymosphaeriaceae. Pet ownership and sibling presence were linked to higher fungal diversity, with outdoor-associated genera such as Aureobasidium being more abundant in these households. Cleaning practices selectively altered fungal communities, with frequent cleaning reducing diversity, but not eliminating resilient taxa like Malassezia. This study highlights the interplay between environmental, household, and socioeconomic factors in shaping indoor fungal communities. The findings underscore the importance of addressing indoor fungal diversity to improve air quality and health, particularly in households with vulnerable populations.
Distribution and Origin of Major, Trace and Rare Earth Elements in Wild Edible Mushrooms: Urban vs. Forest Areas
This paper investigates the composition of major, trace, and rare earth elements in 15 different species of wild edible mushrooms and the possible effect of urban pollution on elemental uptake. The collected mushrooms include different species from the green areas of the city, exposed to urban pollution, and from the forests, with limited anthropogenic influence. Through a comprehensive approach that included the analysis of 46 elements, an attempt was made to expand knowledge about element uptake by mushroom fruiting bodies. The results showed a wide variability in the composition of mushrooms, suggesting a number of factors influencing their element uptake capacity. The data obtained do not indicate significant exposure to anthropogenic influences, regardless of sampling location. While major elements’ levels appear to be influenced more by species-specific affinities, this is not true for trace elements, whose levels presumably reflect the geochemical characteristics of the sampling site. However, the risk assessment showed that consumption of excessive amounts of the mushrooms studied, both from urban areas and from forests, may have adverse health effects.
Apothecial Ancestry, Evolution, and Re-Evolution in Thelebolales (Leotiomycetes, Fungi)
Closed cleistothecia-like ascomata have repeatedly evolved in non-related perithecioid and apothecioid lineages of lichenized and non-lichenized Ascomycota. The evolution of a closed, darkly pigmented ascoma that protects asci and ascospores is conceived as either an adaptation to harsh environmental conditions or a specialized dispersal strategy. Species with closed ascomata have mostly lost sterile hymenial elements (paraphyses) and the capacity to actively discharge ascospores. The class Leotiomycetes, one of the most speciose classes of Ascomycota, is mainly apothecioid, paraphysate, and possesses active ascospore discharge. Lineages with closed ascomata, and their morphological variants, have evolved independently in several families, such as Erysiphaceae, Myxotrichaceae, Rutstroemiaceae, etc. Thelebolales is a distinctive order in the Leotiomycetes class. It has two widespread families (Thelebolaceae, Pseudeurotiaceae) with mostly closed ascomata, evanescent asci, and thus passively dispersed ascospores. Within the order, closed ascomata dominate and a great diversity of peridia have evolved as adaptations to different dispersal strategies. The type genus, Thelebolus, is an exceptional case of ascomatal evolution within the order. Its species are the most diverse in functional traits, encompassing species with closed ascomata and evanescent asci, and species with open ascomata, active ascospore discharge, and paraphyses. Open ascomata were previously suggested as the ancestral state in the genus, these ascomata depend on mammals and birds as dispersal agents. In this scheme, species with closed ascomata, a lack of paraphyses, and passive ascospore discharge exhibit derived traits that evolved in adaptation to cold ecosystems. Here, we used morphological and phylogenetic methods, as well as the reconstruction of ancestral traits for ascomatal type, asci dehiscence, the presence or absence of paraphyses, and ascospore features to explore evolution within Thelebolales. We demonstrate the apothecial ancestry in Thelebolales and propose a new hypothesis about the evolution of the open ascomata in Thelebolus, involving a process of re-evolution where the active dispersal of ascospores appears independently twice within the order. We propose a new family, Holwayaceae, within Thelebolales, that retains the phenotypic features exhibited by species of Thelebolus, i.e., pigmented capitate paraphyses and active asci discharge with an opening limitation ring.
What Do the First 597 Global Fungal Red List Assessments Tell Us about the Threat Status of Fungi?
Fungal species are not immune to the threats facing animals and plants and are thus also prone to extinction. Yet, until 2015, fungi were nearly absent on the IUCN Red List. Recent efforts to identify fungal species under threat have significantly increased the number of published fungal assessments. The 597 species of fungi published in the 2022-1 IUCN Red List update (21 July 2022) are the basis for the first global review of the extinction risk of fungi and the threats they face. Nearly 50% of the assessed species are threatened, with 10% NT and 9% DD. For regions with a larger number of assessments (i.e., Europe, North America, and South America), subanalyses are provided. Data for lichenized and nonlichenized fungi are also summarized separately. Habitat loss/degradation followed by climate change, invasive species, and pollution are the primary identified threats. Bias in the data is discussed along with knowledge gaps. Suggested actions to address these gaps are provided along with a discussion of the use of assessments to facilitate on-the-ground conservation efforts. A research agenda for conservation mycology to assist in the assessment process and implementation of effective species/habitat management is presented.
Inocybe istriaca sp. nov. from Brijuni National Park (Croatia) and Its Position within Inocybaceae Revealed by Multigene Phylogenetic Analysis
Integrative taxonomic studies of macrofungal diversity in the Brijuni National Park (Istria County, Croatia) led to the discovery of a second species of Inocybe (Agaricales, Inocybaceae) new to science. Inocybe istriaca sp. nov. is described on the basis of morphological, ecological, and multigene phylogenetic analyses, and its placement within the family Inocybaceae is discussed. The combination of most important morphological characters that distinguish I. istriaca from the other similar Inocybe species are smooth, (sub)amygdaliform, (sub)phaseoliform, or ellipsoid basidiospores (ca. 8.5–12 × 5–7 μm), large basidia (36–45 × 9–15 μm), mostly (sub)fusiform and weakly thick-walled (up to 1.5 μm) metuloid pleurocystidia, and lamellar edge and stipe apex partially covered by a dark resinous substance. The species was collected on the edge of grassland and Mediterranean evergreen holm oak (Quercus ilex) forest. In this study, a total of 14 DNA sequences from four Inocybe species were generated. Two-gene (ITS, LSU) and four-gene (ITS, LSU, rpb2, tef1) phylogenetic analyses confirmed the status of I. istriaca as an independent species.
Biological Control of Sclerotinia sclerotiorum on Greenhouse Lettuce Using Trichoderma koningiopsis Agg
The lettuce drop or white mold is an economically important disease as the causal fungus Sclerotinia sclerotiorum can infect the lettuce at any stage of plant development. Polyphagous nature of S. sclerotiorum, the longevity of soil-borne sclerotia and air-borne ascospores makes the control difficult. Chemical fungicides are available only for foliar application against infections by ascospores so, the development of bio-control is of great importance. We tested antagonism of native isolate T. koningiopsis agg. (Hypocreales) (STP8) under laboratory and greenhouse environments. In vitro tests showed excellent STP8 antagonisms to S. sclerotiorum evidencing hyperparasitic activity on mycelia and sclerotia as well as antibiosis. The sclerotia were completely degraded after two months. In the greenhouse, infection of lettuce with S. sclerotiorum was reduced by treating the seedlings with an STP8 spore suspension. Uninfected plants treated with STP8 were of the best quality based on morphological parameters, confirming the ability of STP8 to promote lettuce growth. Even the infected lettuce treated with STP8 were healthier and in better condition than the control lettuce, suggesting that STP8 was also enhancing plant defense system.
Response of White Cabbage (Brassica oleracea var. capitata) to Single and Repeated Short-Term Waterlogging
Climate change has a significant impact on the agricultural sector, negatively affecting plants’ growth and development, with predicted strong consequences on food availability in the future. Although we are experiencing more frequent and intense heavy rainfall events, a major contributor to field flooding, there is still not much known about the impact of these events on different crops. In this study, we investigated the effects of waterlogging on a model plant white cabbage (Brassica oleracea var. capitata f. alba), with the aim to follow its response to both single and recurrent short-term (72-h length) waterlogging, as well as to track difference in the sensitivity between plants in different growth stages (38- and 48-day-old plants). In our 22-day experiment, settled under fully controlled conditions (16 h day/8 h night, 25 °C day/20 °C night, 60–70% relative air humidity, 250 µmol m−2 s−1 photosynthetic active radiation), with the aim to more comprehensively recognize consequences of waterlogging on plants, we measured changes in plants on multiple levels: (i) within its morphological traits (number and length of leaves, leaf area, and blade width), (ii) within chlorophyll fluorescence and multispectral traits (20 parameters), (iii) following the levels of plant stress parameters (salicylic acid, abscisic acid, proline, and total polyphenols), and (iv) following changes in the plants’ elemental and mineral composition. According to our results, white cabbage was shown not to be very sensitive to waterlogging, with only plants exposed to repeated waterlogging showing signs of the congestion stress. These signs, observed in the changes of molecular stress parameters salicylic and abscisic acids, were not so clearly evident at the aboveground level. We did not observe changes in the plants’ morphologies, nor their photosynthetic performance. In addition, removal of waterlogging stress resulted in complete recovery of our model plants, suggesting a prompt adaptation response of white cabbage. With the projected increased frequency of occurrence of flooding events, it will become increasingly more important to recognize crops being highly sensitive to flooding with the aim to try to adapt to the changing climate.
Coprinus leucostictus Rediscovered after a Century, Epitypified, and Its Generic Position in Hausknechtia Resolved by Multigene Phylogenetic Analysis of Psathyrellaceae
About a century after the first finding in northern Vietnam (1908), Coprinus leucostictus is rediscovered on 12 localities in southern India and southern to southeastern China, growing in evergreen subtropical or tropical forests. It is morphologically a rather unique species with coprinoid basidiomata, strongly branched and diverticulate veil hyphae, and a hymeniderm pileipellis. The BLAST search of ITS and tef-1α sequences showed its close relationship to Hausknechtia floriformis, which is not clear based on morphological characters. Multigene phylogenetic analysis of a concatenated dataset of ITS, LSU, tef-1α, and β-tubulin sequences, revealed C. leucostictus and H. floriformis as separate, but sister species. Molecular phylogenetic relationships within the family Psathyrellaceae (including 17 genera) are presented in the phylogram. The genera Hausknechtia and Candolleomyces formed two well-supported lineages and were recovered as a monophyletic group. A total of 27 sequences from the genus Hausknechtia were newly generated in this study. Coprinus leucostictus is combined as Hausknechtia leucosticta, its epitype is designated, and the hitherto monotypic genus Hausknechtia is emended. A detailed morphological description of H. leucosticta supplemented with colour photographs and line drawings is provided.