Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Meeter, Lieke H. H."
Sort by:
Imaging and fluid biomarkers in frontotemporal dementia
Key Points Most of the validated biomarkers in frontotemporal dementia (FTD) are used to differentiate patients with FTD from patients with Alzheimer disease or from control individuals Currently validated biomarkers in FTD include grey matter atrophy, alterations in brain metabolism as detected by 18 F-fluorodeoxyglucose-PET and cerebrospinal fluid levels of amyloid-β 1–42 , phospho-tau 181 and total-tau. New imaging biomarkers, detected via techniques such as arterial spin labelling and diffusion tensor imaging, are sensitive to the subtle changes that precede grey matter atrophy in FTD, potentially enabling use in diagnosis and disease monitoring Promising fluid biomarkers include neurofilament light chain (for staging, monitoring and prognosis in all FTD subtypes) and dipeptide-repeat proteins and progranulin (for target engagement in gene-specific forms of FTD) Reliable biomarkers that differentiate between tau pathology and TDP-43 pathology are still needed, to facilitate trials of disease-modifying treatments Future research should focus on the multimodal combination of fluid and imaging biomarkers, as well as the harmonization of biomarker collection and analysis protocols Reliable biomarkers for frontotemporal dementia (FTD) are required for accurate discrimination between dementia types, prediction of clinical progression and tailoring of pharmacological interventions. This Review discusses the increasing number of available biomarkers for FTD — including novel imaging modalities and fluid biomarkers — and the future challenges in their implementation. Frontotemporal dementia (FTD), the second most common type of presenile dementia, is a heterogeneous neurodegenerative disease characterized by progressive behavioural and/or language problems, and includes a range of clinical, genetic and pathological subtypes. The diagnostic process is hampered by this heterogeneity, and correct diagnosis is becoming increasingly important to enable future clinical trials of disease-modifying treatments. Reliable biomarkers will enable us to better discriminate between FTD and other forms of dementia and to predict disease progression in the clinical setting. Given that different underlying pathologies probably require specific pharmacological interventions, robust biomarkers are essential for the selection of patients with specific FTD subtypes. This Review emphasizes the increasing availability and potential applications of structural and functional imaging biomarkers, and cerebrospinal fluid and blood fluid biomarkers in sporadic and genetic FTD. The relevance of new MRI modalities — such as voxel-based morphometry, diffusion tensor imaging and arterial spin labelling — in the early stages of FTD is discussed, together with the ability of these modalities to classify FTD subtypes. We highlight promising new fluid biomarkers for staging and monitoring of FTD, and underline the importance of large, multicentre studies of individuals with presymptomatic FTD. Harmonization in the collection and analysis of data across different centres is crucial for the implementation of new biomarkers in clinical practice, and will become a great challenge in the next few years.
Large-scale CSF proteome profiling identifies biomarkers for accurate diagnosis of frontotemporal dementia
Background Diagnosis of Frontotemporal dementia (FTD) and its specific underlying neuropathologies (frontotemporal lobar degeneration; FTLD-Tau and FTLD-TDP) are challenging, and thus, fluid biomarkers are needed to improve diagnostic accuracy. Methods We used proximity extension assays to analyze 665 proteins in cerebrospinal fluid (CSF) samples from a multicenter cohort, which included patients with FTD ( n  = 189), Alzheimer’s Disease dementia (AD; n  = 232), and cognitively unimpaired individuals ( n  = 196). In a subset, FTLD neuropathology was determined based on phenotype or genotype (FTLD-Tau = 87 and FTLD-TDP = 67). Differences in protein expression profiles were analyzed using nested linear models. Penalized generalized linear modeling was used to identify classification protein panels, which were translated to custom multiplex assays and validated in two clinical cohorts (cohort 1: n  = 161; cohort 2: n  = 162), one autopsy-confirmed cohort ( n  = 100), and one genetic cohort ( n  = 55). Results Forty-three proteins were differentially regulated in FTD compared to controls and AD, reflecting axon development, regulation of synapse assembly, and cell-cell adhesion mediator activity pathways. Classification analysis identified a 14- and 13-CSF protein panel that discriminated FTD from controls (FTD diagnostic panel, AUC: 0.96) or AD (FTD differential diagnostic panel, AUC: 0.91). Custom multiplex panels confirmed the strong discriminative performancen between FTD and controls (AUCs > 0.96) and between FTD and AD (AUCs > 0.88) across three validation cohorts, including one with autopsy confirmation (AUCs > 0.90). Validation in genetic FTD (including C9orf72 , GRN , and MAPT mutation carriers) revealed high accuracy of the FTD diagnostic panel in identifying both the presymptomatic (AUCs > 0.95) and symptomatic (AUC: 1) stages. Six proteins were differentially regulated between FTLD-TDP and FTLD-Tau. However, a reproducible classification model could not be generated (AUC: 0.80). Conclusions Overall, this study introduces novel FTD-specific biomarker panels with potential use in diagnostic settings.
Bias Introduced by Multiple Head Coils in MRI Research: An 8 Channel and 32 Channel Coil Comparison
Neuroimaging MRI data in scientific research is increasingly pooled, but the reliability of such studies may be hampered by the use of different hardware elements. This might introduce bias, for example when cross-sectional studies pool data acquired with different head coils, or when longitudinal clinical studies change head coils halfway. In the present study, we aimed to estimate this possible bias introduced by using different head coils to create awareness and to avoid misinterpretation of results. We acquired, with both an 8 channel and 32 channel head coil, T1-weighted, diffusion tensor imaging and resting state fMRI images at 3T MRI (Philips Achieva) with stable acquisition parameters in a large group of cognitively healthy participants ( = 77). Standard analysis methods, i.e., voxel-based morphometry, tract-based spatial statistics and resting state functional network analyses, were used in a within-subject design to compare 8 and 32 channel head coil data. Signal-to-noise ratios (SNR) for both head coils showed similar ranges, although the 32 channel SNR profile was more homogeneous. Our data demonstrates specific patterns of gray and white matter volume differences between head coils (relative volume change of 6 to 9%), related to altered image contrast and therefore, altered tissue segmentation. White matter connectivity (fractional anisotropy and diffusivity measures) showed hemispherical dependent differences between head coils (relative connectivity change of 4 to 6%), and functional connectivity in resting state networks was higher using the 32 channel head coil in posterior cortical areas (relative change up to 27.5%). This study shows that, even when acquisition protocols are harmonized, the results of standardized analysis models can be severely affected by the use of different head coils. Researchers should be aware of this when combining multiple neuroimaging MRI datasets, to prevent coil-related bias and avoid misinterpretation of their findings.
Distinctive cell‐free DNA methylation characterizes presymptomatic genetic frontotemporal dementia
Objective Methylation of plasma cell‐free DNA (cfDNA) has potential as a marker of brain damage in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, we study methylation of cfDNA in presymptomatic and symptomatic carriers of genetic FTD pathogenic variants, next to healthy controls. Methods cfDNA was isolated from cross‐sectional plasma of 10 presymptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), 10 symptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), and 9 healthy controls. Genome‐wide methylation of cfDNA was determined using a high‐resolution sequencing technique (MeD‐seq). Cumulative scores based on the identified differentially methylated regions (DMRs) were estimated for presymptomatic carriers (vs. controls and symptomatic carriers), and reevaluated in a validation cohort (8 presymptomatic: 3 C9orf72, 3 GRN, and 2 MAPT; 26 symptomatic: 7 C9orf72, 6 GRN, 12 MAPT, and 1 TARDBP; 13 noncarriers from genetic FTD families). Results Presymptomatic carriers showed a distinctive methylation profile compared to healthy controls and symptomatic carriers. Cumulative DMR scores in presymptomatic carriers enabled to significantly differentiate presymptomatic carriers from healthy controls (p < 0.001) and symptomatic carriers (p < 0.001). In the validation cohort, these scores differentiated presymptomatic carriers from symptomatic carriers (p ≤ 0.007) only. Transcription‐start‐site methylation in presymptomatic carriers, generally associated with gene downregulation, was enriched for genes involved in ubiquitin‐dependent processes, while gene body methylation, generally associated with gene upregulation, was enriched for genes involved in neuronal cell processes. Interpretation A distinctive methylation profile of cfDNA characterizes the presymptomatic stage of genetic FTD, and could reflect neuronal death in this stage.
Sex Hormone-Binding Globulin (SHBG) in Cerebrospinal Fluid Does Not Discriminate between the Main FTLD Pathological Subtypes but Correlates with Cognitive Decline in FTLD Tauopathies
Biomarkers to discriminate the main pathologies underlying frontotemporal lobar degeneration (FTLD-Tau, FTLD-TDP) are lacking. Our previous FTLD cerebrospinal fluid (CSF) proteome study revealed that sex hormone-binding globulin (SHBG) was specifically increased in FTLD-Tau patients. Here we investigated the potential of CSF SHBG as a novel biomarker discriminating the main FTLD pathological subtypes. SHBG was measured in CSF samples from patients with FTLD-Tau (n = 23), FTLD-TDP (n = 29) and controls (n = 33) using an automated electro-chemiluminescent immunoassay. Differences in CSF SHBG levels across groups, as well as its association with CSF YKL40, pTau181/total-Tau ratio and cognitive function were analyzed. CSF SHBG did not differ across groups, though a trend towards elevated levels in FTLD-Tau cases compared to FTLD-TDP and controls was observed. CSF SHBG levels were not associated with either CSF YKL40 or the p/tTau ratio. They, however, inversely correlated with the MMSE score (r = −0.307, p = 0.011), an association likely driven by the FTLD-Tau group (r FTLD-Tau = −0.38; r FTLD-TDP = −0.02). CSF SHBG is not a suitable biomarker to discriminate FTLD-Tau from FTLD-TDP.
CSF placental growth factor – a novel candidate biomarker of frontotemporal dementia
Objective Diagnosis of frontotemporal dementia (FTD) is complicated by the overlap of clinical symptoms with other dementia disorders. Development of robust fluid biomarkers is critical to improve the diagnostic work‐up of FTD. Methods CSF concentrations of placental growth factor (PlGF) were measured in the discovery cohort including patients with FTD (n = 27), Alzheimer disease (AD) dementia (n = 75), DLB or PDD (n = 47), subcortical vascular dementia (VaD, n = 33), mild cognitive impairment that later converted to AD (MCI‐AD, n = 34), stable MCI (sMCI, n = 62), and 50 cognitively healthy controls from the Swedish BioFINDER study. For validation, CSF PlGF was measured in additional independent cohort of FTD patients (n = 22) and controls (n = 18) from the Netherlands. Results In the discovery cohort, MCI, MCI‐AD, AD dementia, DLB‐PDD, VaD, and FTD patients all showed increased CSF levels of PlGF compared with controls (sMCI P = 0.019; MCI‐AD P = 0.005; AD dementia, DLB‐PDD, VaD, and FTD all P < 0.001). PlGF levels were 1.8–2.1‐fold higher in FTD than in AD, DLB‐PDD and VaD (all P < 0.001). PlGF distinguished with high accuracy FTD from controls and sMCI performing better than tau/Aβ42 (AUC 0.954–0.996 versus 0.564–0.754, P < 0.001). A combination of PlGF, tau, and Aβ42 (tau/Aβ42/PlGF) was more accurate than tau/Aβ42 when differentiating FTD from a group of other dementias (AUC 0.972 vs. 0.932, P < 0.01). Increased CSF levels of PlGF in FTD compared with controls were corroborated in the validation cohort. Interpretation CSF PlGF is increased in FTD compared with other dementia disorders, MCI, and healthy controls and might be useful as a diagnostic biomarker of FTD.
Longitudinal cognitive biomarkers predicting symptom onset in presymptomatic frontotemporal dementia
IntroductionWe performed 4-year follow-up neuropsychological assessment to investigate cognitive decline and the prognostic abilities from presymptomatic to symptomatic familial frontotemporal dementia (FTD).MethodsPresymptomatic MAPT (n = 15) and GRN mutation carriers (n = 31), and healthy controls (n = 39) underwent neuropsychological assessment every 2 years. Eight mutation carriers (5 MAPT, 3 GRN) became symptomatic. We investigated cognitive decline with multilevel regression modeling; the prognostic performance was assessed with ROC analyses and stepwise logistic regression.ResultsMAPT converters declined on language, attention, executive function, social cognition, and memory, and GRN converters declined on attention and executive function (p < 0.05). Cognitive decline in ScreeLing phonology (p = 0.046) and letter fluency (p = 0.046) were predictive for conversion to non-fluent variant PPA, and decline on categorical fluency (p = 0.025) for an underlying MAPT mutation.DiscussionUsing longitudinal neuropsychological assessment, we detected a mutation-specific pattern of cognitive decline, potentially suggesting prognostic value of neuropsychological trajectories in conversion to symptomatic FTD.
Therapeutic trial design for frontotemporal dementia and related disorders
The frontotemporal dementia (FTD) spectrum is a heterogeneous group of neurodegenerative syndromes with overlapping clinical, molecular and pathological features, all of which challenge the design of clinical trials in these conditions. To date, no pharmacological interventions have been proven effective in significantly modifying the course of these disorders. This study critically reviews the construct and methodology of previously published randomised controlled trials (RCTs) in FTD spectrum disorders in order to identify limitations and potential reasons for negative results. Moreover, recommendations based on the identified gaps are elaborated in order to guide future clinical trial design. A systematic literature review was carried out and presented in conformity with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. A total of 23 RCTs in cohorts with diagnoses of behavioural and language variants of FTD, corticobasal syndrome and progressive supranuclear palsy syndrome were identified out of the 943 citations retrieved and were included in the qualitative review. Most studies identified were early-phase clinical trials that were small in size, short in duration and frequently underpowered. Diagnoses of populations enrolled in clinical trials were based on clinical presentation and rarely included precision-medicine tools, such as genetic and molecular testing. Uniformity and standardisation of research outcomes in the FTD spectrum are essential. Several elements should be carefully considered and planned in future clinical trials. We anticipate that precision-medicine approaches will be crucial to adequately address heterogeneity in the FTD spectrum research.
Unfolded protein response activation in C9orf72 frontotemporal dementia is associated with dipeptide pathology and granulovacuolar degeneration in granule cells
A repeat expansion in the C9orf72 gene is the most prevalent genetic cause of frontotemporal dementia (C9‐FTD). Several studies have indicated the involvement of the unfolded protein response (UPR) in C9‐FTD. In human neuropathology, UPR markers are strongly associated with granulovacuolar degeneration (GVD). In this study, we aim to assess the presence of UPR markers together with the presence of dipeptide pathology and GVD in post mortem brain tissue from C9‐FTD cases and neurologically healthy controls. Using immunohistochemistry we assessed the presence of phosphorylated PERK, IRE1α and eIF2α in the frontal cortex, hippocampus and cerebellum of C9‐FTD (n = 18) and control (n = 9) cases. The presence of UPR activation markers was compared with the occurrence of pTDP‐43, p62 and dipeptide repeat (DPR) proteins (poly(GA), ‐(GR) & ‐(GP)) as well as casein kinase 1 delta (CK1δ), a marker for GVD. Increased presence of UPR markers was observed in the hippocampus and cerebellum in C9‐FTD compared to control cases. In the hippocampus, overall levels of pPERK and peIF2α were higher in C9‐FTD, including in granule cells of the dentate gyrus (DG). UPR markers were also observed in granule cells of the cerebellum in C9‐FTD. In addition, increased levels of CK1δ were observed in granule cells in the DG of the hippocampus and granular layer of the cerebellum in C9‐FTD. Double‐labelling experiments indicate a strong association between UPR markers and the presence of dipeptide pathology as well as GVD. We conclude that UPR markers are increased in C9‐FTD and that their presence is associated with dipeptide pathology and GVD. Increased presence of UPR markers and CK1δ in granule cells in the cerebellum and hippocampus could be a unique feature of C9‐FTD.
CSF proteome profiling across the Alzheimer’s disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels
Development of disease-modifying therapies against Alzheimer's disease (AD) requires biomarkers reflecting the diverse pathological pathways specific for AD. We measured 665 proteins in 797 cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment with abnormal amyloid (MCI(Aβ+): n = 50), AD-dementia (n = 230), non-AD dementias (n = 322) and cognitively unimpaired controls (n = 195) using proximity ligation-based immunoassays. Here we identified >100 CSF proteins dysregulated in MCI(Aβ+) or AD compared to controls or non-AD dementias. Proteins dysregulated in MCI(Aβ+) were primarily related to protein catabolism, energy metabolism and oxidative stress, whereas those specifically dysregulated in AD dementia were related to cell remodeling, vascular function and immune system. Classification modeling unveiled biomarker panels discriminating clinical groups with high accuracies (area under the curve (AUC): 0.85-0.99), which were translated into custom multiplex assays and validated in external and independent cohorts (AUC: 0.8-0.99). Overall, this study provides novel pathophysiological leads delineating the multifactorial nature of AD and potential biomarker tools for diagnostic settings or clinical trials.