Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,034 result(s) for "Mehta, M. A."
Sort by:
Profiles of objective and subjective cognitive function in Post-COVID Syndrome, COVID-19 recovered, and COVID-19 naïve individuals
Post-COVID Syndrome has emerged as a significant public health concern worldwide with increasing evidence to suggest that individuals who have had an acute COVID-19 infection report lingering memory and attention difficulties, even in individuals who have fully recovered and no longer experiencing symptoms of COVID-19. The present study sought to investigate the profile of objective and subjective cognitive difficulties in people who have Post-COVID Syndrome, people who have fully recovered from an acute COVID infection and people who have never had COVID-19. We further sought to explore the extent to which self-reported fatigue and stress are related to subjective and objective cognitive difficulties. 162 participants including 50 people living with Post-COVID Syndrome, 59 people who have had COVID-19 but have fully recovered and 53 people who have never experienced symptoms of COVID-19 and had never tested positive for COVID-19 were recruited from Academic Prolific to complete a series of online questionnaires and neurocognitive tasks. Subjective cognitive function was measured using the Cognitive Failures Questionnaire and objective cognitive function was measured using the Cognitron cognitive test battery. We found that objective and subjective measures of cognitive function were not significantly related, suggesting that self-reports of “brain fog” are not reflecting objectively measured cognitive dysfunction. A MANOVA revealed that subjective cognitive deficits were driven by heightened perceived stress and fatigue and not significantly related to COVID-19 status. Objective cognitive function, however, was significantly related to perceived stress and COVID status whereby we observed significant objective cognitive deficits in people who have been exposed to an acute COVID-19 infection regardless of whether they had Post-COVID Syndrome or had fully recovered, as compared to people who had never had COVID-19. This suggests that an acute infection can have long term effects on cognitive function, even without persistent COVID-19 symptoms. Encouragingly, objective cognitive function was significantly associated with time since initial infection showing that cognitive deficits improved over time for people who had recovered from COVID-19. However, we did not observe the same improvement in individuals with Post-COVID Syndrome and observed that cognitive dysfunction was significantly related to the number of neurological symptoms presently experienced. These results add to the accumulating literature that COVID-19 is associated with significant cognitive difficulties following a COVID-19 infection, which appear to improve over time for those who have recovered from COVID-19 yet persist in people living with Post-COVID Syndrome.
Distinct frontal systems for response inhibition, attentional capture, and error processing
Stopping an action in response to an unexpected event requires both that the event is attended to, and that the action is inhibited. Previous neuroimaging investigations of stopping have failed to adequately separate these cognitive elements. Here we used a version of the widely used Stop Signal Task that controls for the attentional capture of stop signals. This allowed us to fractionate the contributions of frontal regions, including the right inferior frontal gyrus and medial frontal cortex, to attentional capture, response inhibition, and error processing. A ventral attentional system, including the right inferior frontal gyrus, has been shown to respond to unexpected stimuli. In line with this evidence, we reasoned that lateral frontal regions support attentional capture, whereas medial frontal regions, including the presupplementary motor area (pre-SMA), actually inhibit the ongoing action. We tested this hypothesis by contrasting the brain networks associated with the presentation of unexpected stimuli against those associated with outright stopping. Functional MRI images were obtained in 26 healthy volunteers. Successful stopping was associated with activation of the right inferior frontal gyrus, as well as the pre-SMA. However, only activation of the pre-SMA differentiated stopping from a high-level baseline that controlled for attentional capture. As expected, unsuccessful attempts at stopping activated the anterior cingulate cortex. In keeping with work in nonhuman primates these findings demonstrate that successful motor inhibition is specifically associated with pre-SMA activation.
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans
Rationale Preclinical studies indicate that high-frequency oscillations, above 100 Hz (HFO:100–170 Hz), are a potential translatable biomarker for pharmacological studies, with the rapid acting antidepressant ketamine increasing both gamma (40–100 Hz) and HFO. Objectives To assess the effect of the uncompetitive NMDA antagonist ketamine, and of D-cycloserine (DCS), which acts at the glycine site on NMDA receptors on HFO in humans. Methods We carried out a partially double-blind, 4-way crossover study in 24 healthy male volunteers. Each participant received an oral tablet and an intravenous infusion on each of four study days. The oral treatment was either DCS (250 mg or 1000 mg) or placebo. The infusion contained 0.5 mg/kg ketamine or saline placebo. The four study conditions were therefore placebo-placebo, 250 mg DCS-placebo, 1000 mg DCS-placebo, or placebo-ketamine. Results Compared with placebo, frontal midline HFO magnitude was increased by ketamine ( p  = 0.00014) and 1000 mg DCS ( p  = 0.013). Frontal gamma magnitude was also increased by both these treatments. However, at a midline parietal location, only HFO were increased by DCS, and not gamma, whilst ketamine increased both gamma and HFO at this location. Ketamine induced psychomimetic effects, as measured by the PSI scale, whereas DCS did not increase the total PSI score. The perceptual distortion subscale scores correlated with the posterior low gamma to frontal high beta ratio. Conclusions Our results suggest that, at high doses, a partial NMDA agonist (DCS) has similar effects on fast neural oscillations as an NMDA antagonist (ketamine). As HFO were induced without psychomimetic effects, they may prove a useful drug development target.
Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile
Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.
Test–retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers
The pharmacological MRI (phMRI) technique is being increasingly used in both pre-clinical and clinical models to investigate pharmacological effects on task-free brain function. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, induces a strong phMRI response and represents a promising pharmacological model to investigate the role of glutamatergic abnormalities in psychiatric symptomatology. The aim of this study was to assess whether the brain response to ketamine is reliable in order to validate ketamine phMRI as a mechanistic marker of glutamatergic dysfunction and to determine its utility in repeated measures designs to detect the modulatory effect of other drugs. Thus we assessed the test–retest reliability of the brain response to ketamine in healthy volunteers and identified an optimal modelling approach with reliability as our selection criterion. PhMRI data were collected from 10 healthy male participants, at rest, on two separate occasions. Subanaesthetic doses of I.V. ketamine infusion (target plasma levels 50ng/mL and 75ng/mL) were administered in both sessions. Test–retest reliability of the ketamine phMRI response was assessed voxel-wise and on pre-defined ROIs for a range of temporal design matrices including different combinations of nuisance regressors designed to model shape variance, linear drift and head motion. Effect sizes are also reported. All models showed a significant and widespread response to low-dose ketamine in predicted cerebral networks and as expected, increasing the number of model parameters improved model fit. Reliability of the predefined ROIs differed between the different models assessed. Using reliability as the selection criterion, a model capturing subject motion and linear drift performed the best across two sessions. The anatomical distribution of effects for all models was consistent with results of previous imaging studies in humans with BOLD signal increases in regions including midline cingulate and supracingulate cortex, thalamus, insula, anterior temporal lobe and ventrolateral prefrontal structures, and BOLD signal decreases in the subgenual cingulate cortex. This study represents the first investigation of the test–retest reliability of the BOLD phMRI response to acute ketamine challenge. All models tested were effective at describing the ketamine response although the design matrix associated with the highest reliability may represent a robust and well-characterised ketamine phMRI assay more suitable for repeated-measures designs. This ketamine assay is applicable as a model of neurotransmitter dysfunction suitable as a pharmacodynamic imaging tool to test and validate modulatory interventions, as a model of NMDA hypofunction in psychiatric disorders, and may be adapted to understand potential antidepressant and analgesic effects of NMDAR antagonists.
Cytoreductive surgery in combination with hyperthermic intraperitoneal chemotherapy improves survival in patients with colorectal peritoneal metastases compared with systemic chemotherapy alone
Background: Colorectal cancer peritoneal metastasis (CPM) confers an exceptionally poor prognosis, and traditional treatment involving systemic chemotherapy (SC) is largely ineffective. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is increasingly advocated for selected patients with CPM; however, opinions are divided because of the perceived lack of evidence, high morbidity, mortality, and associated costs for this approach. As there is no clear consensus, the aim of this study was to compare outcomes following CRS+HIPEC vs SC alone for CPM using meta-analytical methodology, focusing on survival outcomes. Secondary outcomes assessed included morbidity, mortality, quality of life (QOL), and health economics (HE). Methods: An electronic literature search was conducted to identify studies comparing survival following CRS+HIPEC vs SC for CPM. The odds ratio (OR) was calculated using the Mantel–Haenszel method with corresponding 95% confidence intervals (CI) and P -values. Heterogeneity was examined using the Q -statistic and quantified with I 2 . The fixed-effect model (FEM) was used in the absence of significant heterogeneity. For included studies, 2- and 5-year survival was compared for CRS+HIPEC vs SC alone. Results: Four studies (three case–control, one RCT) provided comparative survival data for patients undergoing CRS+HIPEC ( n =187) vs SC ( n =155) for CPM. Pooled analysis demonstrated superior 2-year (OR 2.78; 95% CI 1.72–4.51; P =0.001) and 5-year (OR 4.07; 95% CI 2.17–7.64; P =0.001) survival with CRS+HIPEC compared with SC. Mortality ranged from 0 to 8%. No data were available for the assessment of QOL or HE. Conclusions: Although limited by between-study heterogeneity, the data support the assertion that in carefully selected patients, multimodal treatment of CPM with CRS+HIPEC has a highly positive prognostic impact on medium- and long-term survival compared with SC alone. There is a paucity of comparative data available on morbidity, QOL, and HE.
Effects of ketamine on brain function during response inhibition
Introduction The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to model symptoms of psychosis. Inhibitory deficits in the schizophrenia spectrum have been reliably reported using the antisaccade task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates, ketamine-induced deficits have not been observed in healthy human volunteers. Methods To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind, placebo-controlled, within-subjects study on n  = 15 healthy males. We measured the blood oxygen level dependent (BOLD) response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion. Results While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR blockage. Discussion Given the robust evidence of antisaccade deficits in schizophrenia spectrum populations, the current findings suggest that ketamine may not mimic all features of psychosis at the dose used in this study. Our findings underline the importance of a more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior, with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of importance in this context.
Dopamine manipulations modulate paranoid social inferences in healthy people
Altered dopamine transmission is thought to influence the formation of persecutory delusions. However, despite extensive evidence from clinical studies there is little experimental evidence on how modulating the dopamine system changes social attributions related to paranoia, and the salience of beliefs more generally. Twenty seven healthy male participants received 150mg L-DOPA, 3 mg haloperidol, or placebo in a double-blind, randomised, placebo-controlled study, over three within-subject sessions. Participants completed a multi-round Dictator Game modified to measure social attributions, and a measure of belief salience spanning themes of politics, religion, science, morality, and the paranormal. We preregistered predictions that altering dopamine function would affect (i) attributions of harmful intent and (ii) salience of paranormal beliefs. As predicted, haloperidol reduced attributions of harmful intent across all conditions compared to placebo. L-DOPA reduced attributions of harmful intent in fair conditions compared to placebo. Unexpectedly, haloperidol increased attributions of self-interest about opponents’ decisions. There was no change in belief salience within any theme. These results could not be explained by scepticism or subjective mood. Our findings demonstrate the selective involvement of dopamine in social inferences related to paranoia in healthy individuals.
The impact of CFTR modulator triple therapy on type 2 inflammatory response in patients with cystic fibrosis
Background Treatment of cystic fibrosis (CF) has been revolutionized by the use of cystic fibrosis transmembrane conductance regulator (CFTR) protein modulators such as elexacaftor/tezacaftor/ivacaftor (ETI) triple therapy. Prior studies support a role for type 2 (T2) inflammation in many people with CF (PwCF) and CF-asthma overlap syndrome (CFAOS) is considered a separate clinical entity. It is unknown whether initiation of ETI therapy impacts T2 inflammation in PwCF. We hypothesized that ETI initiation decreases T2 inflammation in PwCF. Methods A single center retrospective chart review was conducted for adult PwCF. As markers of T2 inflammation, absolute eosinophil count (AEC) and total immunoglobulin E (IgE) data were collected longitudinally 12 months prior to ETI therapy initiation and 12 months following therapy initiation. Multivariable analyses adjusted for the age, gender, CFTR mutation, disease severity, inhaled steroid use, and microbiological colonization. Results There was a statistically significant reduction (20.10%, p < 0.001) in 12-month mean total IgE following ETI initiation; this change remained statistically significant in the multivariate model. The longitudinal analysis demonstrated no change in AEC following therapy initiation. Conclusion This study demonstrates that there is a statistically significant percent reduction in mean total IgE but no change in AEC following ETI initiation. ETI may lead to decreased antigen and superantigen load in the airway as a result of improved mucociliary clearance and these changes may drive the decline in total IgE, without influencing the epigenetic drivers of eosinophilic inflammation. Further studies are warranted to determine the underlying mechanism of ETI impact on T2 inflammation and possible role for asthma immunomodulator therapy post ETI initiation in CFAOS.