Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Meignien, Marie"
Sort by:
Human inherited complete STAT2 deficiency underlies inflammatory viral diseases
by
Momenilandi, Mana
,
Ogishi, Masato
,
Bucciol, Giorgia
in
Alleles
,
Bacterial pneumonia
,
BCG vaccines
2023
STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.
Journal Article
Human inherited complete STAT2 deficiency underlies inflammatory viral diseases
by
Momenilandi, Mana
,
Mohammed, Reem W
,
Ogishi, Masato
in
Biomedical research
,
CD8 antigen
,
Cerebrospinal fluid
2023
STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.
Journal Article