Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Melani, Christopher"
Sort by:
Combination Targeted Therapy in Relapsed Diffuse Large B-Cell Lymphoma
The identification of oncogenic mutations in diffuse large B-cell lymphoma (DLBCL) has led to the development of drugs that target essential survival pathways, but whether targeting multiple survival pathways may be curative in DLBCL is unknown. We performed a single-center, phase 1b-2 study of a regimen of venetoclax, ibrutinib, prednisone, obinutuzumab, and lenalidomide (ViPOR) in relapsed or refractory DLBCL. In phase 1b, which included patients with DLBCL and indolent lymphomas, four dose levels of venetoclax were evaluated to identify the recommended phase 2 dose, with fixed doses of the other four drugs. A phase 2 expansion in patients with germinal-center B-cell (GCB) and non-GCB DLBCL was performed. ViPOR was administered every 21 days for six cycles. In phase 1b of the study, involving 20 patients (10 with DLBCL), a single dose-limiting toxic effect of grade 3 intracranial hemorrhage occurred, a result that established venetoclax at a dose of 800 mg as the recommended phase 2 dose. Phase 2 included 40 patients with DLBCL. Toxic effects that were observed among all the patients included grade 3 or 4 neutropenia (in 24% of the cycles), thrombocytopenia (in 23%), anemia (in 7%), and febrile neutropenia (in 1%). Objective responses occurred in 54% of 48 evaluable patients with DLBCL, and complete responses occurred in 38%; complete responses were exclusively in patients with non-GCB DLBCL and high-grade B-cell lymphoma with rearrangements of and or (or both). Circulating tumor DNA was undetectable in 33% of the patients at the end of ViPOR therapy. With a median follow-up of 40 months, 2-year progression-free survival and overall survival were 34% (95% confidence interval [CI], 21 to 47) and 36% (95% CI, 23 to 49), respectively. Treatment with ViPOR was associated with durable remissions in patients with specific molecular DLBCL subtypes and was associated with mainly reversible adverse events. (Funded by the Intramural Research Program of the National Cancer Institute and the National Center for Advancing Translational Sciences of the National Institutes of Health and others; ClinicalTrials.gov number, NCT03223610.).
PD-1 Blockade in Mediastinal Gray-Zone Lymphoma
Mediastinal gray-zone lymphoma is intermediate between classic Hodgkin’s lymphoma and primary mediastinal B-cell lymphoma. Three patients whose disease had become refractory to chemotherapy had impressive responses to PD-1 blockade.
PD-1 Blockade in Mediastinal Gray-Zone Lymphoma
Mediastinal gray-zone lymphoma is intermediate between classic Hodgkin’s lymphoma and primary mediastinal B-cell lymphoma. Three patients whose disease had become refractory to chemotherapy had impressive responses to PD-1 blockade.
Introduction: Generations of Empire in American Studies
The global and local impacts of the pandemic were frightening and obvious: the anti-Chinese and anti-Asian rhetoric (fomented by the president himself); the differential impacts on racialized and marginalized communities; a world politicized by the mere act of wearing a face mask—indeed, by the very idea of social responsibility and public health—and, ultimately, the fracturing of any meaningful sense of public good. In all these expansions, culture played a central role: missionaries taught the superiority of Christianity and laid the groundwork for dispossession, while cultural narratives (in forms such as sermons, dime novels, and lurid newspaper accounts) shaped a sense of white superiority and its self-claimed civilizing mission. (The US still occupies Puerto Rico and Guam, and while the Philippines became independent in 1946 after a long period of colonial rule, it has remained a site of US neocolonialism and militarism.) As military and industrial might positioned the US as a world power after World War I, and a global superpower after World War II, the culture industry became central to US empire writ large, as Hollywood movies, jazz and popular music, and comic books shaped the imagination and desires of generations of people living outside US borders. Given the intertwined work of politics, economy, and culture, any accounting of US empire would require the demarcation of key moments in the expansion of multiple forms of power (necessarily a salmagundi of events): the first Singer sewing machine sold abroad; the digging of the Panama Canal; the Marshall Plan; State Department jazz tours; wars in Indochina; the rise of human rights activism; the global reach of hip-hop; the long horrors of the War on Terror; the border walls; Indigenous activism at Standing Rock—to name just a few.
Regulators of Human White Adipose Browning: Evidence for Sympathetic Control and Sexual Dimorphic Responses to Sprint Interval Training
The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21) were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11). The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE), but was increased during hypoxia mediated sympathetic activation (368±135); this response was abrogated (P = 0.035) with clonidine (269±93). Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21). Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5) was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT). SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046) but did not affect FNDC5 (P = 0.79). Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045) and increased in females (139±14 vs. 170±18). Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT.
Exposing the molecular heterogeneity of glycosylated biotherapeutics
The heterogeneity inherent in today’s biotherapeutics, especially as a result of heavy glycosylation, can affect a molecule’s safety and efficacy. Characterizing this heterogeneity is crucial for drug development and quality assessment, but existing methods are limited in their ability to analyze intact glycoproteins or other heterogeneous biotherapeutics. Here, we present an approach to the molecular assessment of biotherapeutics that uses proton-transfer charge-reduction with gas-phase fractionation to analyze intact heterogeneous and/or glycosylated proteins by mass spectrometry. The method provides a detailed landscape of the intact molecular weights present in biotherapeutic protein preparations in a single experiment. For glycoproteins in particular, the method may offer insights into glycan composition when coupled with a suitable bioinformatic strategy. We tested the approach on various biotherapeutic molecules, including Fc-fusion, VHH-fusion, and peptide-bound MHC class II complexes to demonstrate efficacy in measuring the proteoform-level diversity of biotherapeutics. Notably, we inferred the glycoform distribution for hundreds of molecular weights for the eight-times glycosylated fusion drug IL22-Fc, enabling correlations between glycoform sub-populations and the drug’s pharmacological properties. Our method is broadly applicable and provides a powerful tool to assess the molecular heterogeneity of emerging biotherapeutics. The molecular heterogeneity of glycosylated biotherapeutics often complicates analysis by intact mass spectrometry. Here, the authors propose a simplified procedure for characterization that employs proton transfer charge reduction. Integration with glycomic and glycopeptide datasets can further provide glycoform-level information.
Towards a universal method for middle-down analysis of antibodies via proton transfer charge reduction—Orbitrap mass spectrometry
Modern mass spectrometry technology allows for extensive sequencing of the ~ 25 kDa subunits of monoclonal antibodies (mAbs) produced by IdeS proteolysis followed by disulfide bond reduction, an approach known as middle-down mass spectrometry (MD MS). However, the spectral congestion of tandem mass spectra of large polypeptides dramatically complicates fragment ion assignment. Here, we report the development and benchmark of an MD MS strategy based on the combination of different ion fragmentation techniques with proton transfer charge reduction (PTCR) to simplify the gas-phase sequencing of mAb subunits. Applied on the liquid chromatography time scale using an Orbitrap Tribrid mass spectrometer, PTCR produces easy-to-interpret mass spectra with limited ion signal overlap. We demonstrate that the accurate estimation of the number of charges submitted to the Orbitrap mass analyzer after PTCR allows for the detection of charge-reduced product ions over a wide mass-over-charge (m/z) window with low parts per million m/z accuracy. Therefore, PTCR-based MD MS analysis increases not only sequence coverage, number of uniquely identified fragments, and number of assigned complementary ion pairs, but also the general confidence in the assignment of subunit fragments. This data acquisition method can be readily applied to any class of mAbs without an apparent need for optimization, and benefits from the high resolving power of the Orbitrap mass analyzer to return sequence coverage of individual subunits exceeding 80% in a single run, and > 90% when just two experiments are combined.
Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury
Intravenous administration of vitamin C has been shown to decrease oxidative stress and, in some instances, improve physiological function in adult humans. Oral vitamin C administration is typically less effective than intravenous, due in part to inferior vitamin C bioavailability. The purpose of this study was to determine the efficacy of oral delivery of vitamin C encapsulated in liposomes. On 4 separate randomly ordered occasions, 11 men and women were administered an oral placebo, or 4 g of vitamin C via oral, oral liposomal, or intravenous delivery. The data indicate that oral delivery of 4 g of vitamin C encapsulated in liposomes (1) produces circulating concentrations of vitamin C that are greater than unencapsulated oral but less than intravenous administration and (2) provides protection from ischemia-reperfusion-mediated oxidative stress that is similar to the protection provided by unencapsulated oral and intravenous administrations.
An Optimized Method for Evaluating the Potential Gd-Nanoparticle Dose Enhancement Produced by Electronic Brachytherapy
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each energy. The evaluation was performed using delaminated radiochromic films and a Poly(methyl methacrylate) (PMMA) phantom covered on one side by a thin 2.5 μm Mylar filter acting as an interface between the region with Gd suspension and the radiosensitive film substrate. The results for the 70 kVp beam quality showed dose increments of 6±6%, 22±7%, and 9±7% at different concentrations of 10, 20, and 30 mg/mL, respectively, verifying the competitive mechanisms of enhancement and attenuation. For the 50 kVp beam quality, no increase in dose was recorded for the concentrations studied, indicating that the major contribution to enhancement is from the K-edge interaction. In order to separate the contributions of attenuation and enhancement to the total dose, measurements were replicated with a 12 μm Mylar filter, obtaining a dose enhancement attributable to the K-edge of 29±7% and 34±7% at 20 and 30 mg/mL, respectively, evidencing a significant additional dose proportional to the Gd concentration.