Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Melnik, Alexey V."
Sort by:
Global chemical effects of the microbiome include new bile-acid conjugations
2020
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
–
9
. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units
10
), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches
11
,
12
–
13
to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry
14
. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.
Metabolomics data from germ-free and specific-pathogen-free mice reveal effects of the microbiome on host chemistry, identifying conjugations of bile acids that are also enriched in patients with inflammatory bowel disease or cystic fibrosis.
Journal Article
Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus
by
Zengler, Karsten
,
Ramasamy, Manikandan
,
Rolshausen, Philippe E.
in
631/1647/2196
,
631/1647/296
,
631/1647/320
2024
Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium,
Candidatus
Liberibacter asiaticus
(C
Las), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that
C
Las infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to
C
Las, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds
in planta
for potential prophylactic or therapeutic applications.
Journal Article
The impact of skin care products on skin chemistry and microbiome dynamics
by
Brennan, Caitriona
,
Zengler, Karsten
,
Bouslimani, Amina
in
16S rRNA sequencing
,
Adult
,
Bacteria
2019
Background
Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks.
Results
Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study remain detectable with half-lives of 0.5–1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity. Personal care product effects last for weeks and produce highly individualized responses, including alterations in steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics.
Conclusions
These findings may lead to next-generation precision beauty products and therapies for skin disorders.
Journal Article
Open access repository-scale propagated nearest neighbor suspect spectral library for untargeted metabolomics
2023
Despite the increasing availability of tandem mass spectrometry (MS/MS) community spectral libraries for untargeted metabolomics over the past decade, the majority of acquired MS/MS spectra remain uninterpreted. To further aid in interpreting unannotated spectra, we created a nearest neighbor suspect spectral library, consisting of 87,916 annotated MS/MS spectra derived from hundreds of millions of MS/MS spectra originating from published untargeted metabolomics experiments. Entries in this library, or “suspects,” were derived from unannotated spectra that could be linked in a molecular network to an annotated spectrum. Annotations were propagated to unknowns based on structural relationships to reference molecules using MS/MS-based spectrum alignment. We demonstrate the broad relevance of the nearest neighbor suspect spectral library through representative examples of propagation-based annotation of acylcarnitines, bacterial and plant natural products, and drug metabolism. Our results also highlight how the library can help to better understand an Alzheimer’s brain phenotype. The nearest neighbor suspect spectral library is openly available for download or for data analysis through the GNPS platform to help investigators hypothesize candidate structures for unknown MS/MS spectra in untargeted metabolomics data.
Interpreting untargeted mass spectrometry (MS) data is challenging due to incomplete reference libraries. Here, the authors created the nearest neighbor suspect spectral library from largescale public MS data, significantly enhancing the ability to hypothesize structures for unknown mass spectra.
Journal Article
3D molecular cartography using LC-MS facilitated by Optimus and 'ili software
by
Nothias, Louis-felix
,
Phapale, Prasad
,
Ryazanov, Sergey
in
Agricultural biotechnology
,
Biotechnology
,
Cartography
2018
Our skin, our belongings, the world surrounding us, and the environment we live in are covered with molecular traces. Detecting and characterizing these molecular traces is necessary to understand the environmental impact on human health and disease, and to decipher complex molecular interactions between humans and other species, particularly microbiota. We recently introduced 3D molecular cartography for mapping small organic molecules (including metabolites, lipids, and environmental molecules) found on various surfaces, including the human body. Here, we provide a protocol and open-source software for 3D molecular cartography. The protocol includes step-by-step procedures for sample collection and processing, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, quality control (QC), molecular identification using MS/MS, data processing, and visualization with 3D models of the sampled environment. The LC-MS method was optimized for a broad range of small organic molecules. We enable scientists to reproduce our previously obtained results, and illustrate the broad utility of our approach with molecular maps of a rosemary plant and an ATM keypad after a PIN code was entered. To promote reproducibility, we introduce cartographical snapshots: files that describe a particular map and visualization settings, and that can be shared and loaded to reproduce the visualization. The protocol enables molecular cartography to be performed in any mass spectrometry laboratory and, in principle, for any spatially mapped data. We anticipate applications, in particular, in medicine, ecology, agriculture, biotechnology, and forensics. The protocol takes 78 h for a molecular map of 100 spots, excluding the reagent setup.
Journal Article
Identification of the Bacterial Biosynthetic Gene Clusters of the Oral Microbiome Illuminates the Unexplored Social Language of Bacteria during Health and Disease
2019
The healthy oral microbiome is symbiotic with the human host, importantly providing colonization resistance against potential pathogens. Dental caries and periodontitis are two of the world’s most common and costly chronic infectious diseases and are caused by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, often encoded by BGCs, are the primary communication media of bacterial communities and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This study provides a comprehensive mapping of the BGC repertoire of the human oral microbiome and identifies major differences in health compared to disease. Furthermore, BGC representation and expression is linked to the abundance of particular oral bacterial taxa in health versus dental caries and periodontitis. Overall, this study provides a significant insight into the chemical communication network of the healthy oral microbiome and how it devolves in the case of two prominent diseases. Small molecules are the primary communication media of the microbial world. Recent bioinformatic studies, exploring the biosynthetic gene clusters (BGCs) which produce many small molecules, have highlighted the incredible biochemical potential of the signaling molecules encoded by the human microbiome. Thus far, most research efforts have focused on understanding the social language of the gut microbiome, leaving crucial signaling molecules produced by oral bacteria and their connection to health versus disease in need of investigation. In this study, a total of 4,915 BGCs were identified across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence similarity networking provided a putative product class for more than 100 unclassified novel BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and metatranscriptomes derived from individuals either with good oral health or with dental caries or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented across the oral microbiomes associated with health versus disease. Coabundance network analysis identified numerous inverse correlations between BGCs and specific oral taxa. These correlations were present in healthy individuals but greatly reduced in individuals with dental caries, which may suggest a defect in colonization resistance. Finally, corroborating mass spectrometry identified several compounds with homology to products of the predicted BGC classes. Together, these findings greatly expand the number of known biosynthetic pathways present in the oral microbiome and provide an atlas for experimental characterization of these abundant, yet poorly understood, molecules and socio-chemical relationships, which impact the development of caries and periodontitis, two of the world’s most common chronic diseases. IMPORTANCE The healthy oral microbiome is symbiotic with the human host, importantly providing colonization resistance against potential pathogens. Dental caries and periodontitis are two of the world’s most common and costly chronic infectious diseases and are caused by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, often encoded by BGCs, are the primary communication media of bacterial communities and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This study provides a comprehensive mapping of the BGC repertoire of the human oral microbiome and identifies major differences in health compared to disease. Furthermore, BGC representation and expression is linked to the abundance of particular oral bacterial taxa in health versus dental caries and periodontitis. Overall, this study provides a significant insight into the chemical communication network of the healthy oral microbiome and how it devolves in the case of two prominent diseases.
Journal Article
Lifestyle chemistries from phones for individual profiling
by
Xu, Zhenjiang
,
Bouslimani, Amina
,
Dorrestein, Pieter C.
in
Chemistry
,
Deoxyribonucleic acid
,
Lifestyles
2016
Imagine a scenario where personal belongings such as pens, keys, phones, or handbags are found at an investigative site. It is often valuable to the investigative team that is trying to trace back the belongings to an individual to understand their personal habits, even when DNA evidence is also available. Here, we develop an approach to translate chemistries recovered from personal objects such as phones into a lifestyle sketch of the owner, using mass spectrometry and informatics approaches. Our results show that phones’ chemistries reflect a personalized lifestyle profile. The collective repertoire of molecules found on these objects provides a sketch of the lifestyle of an individual by highlighting the type of hygiene/beauty products the person uses, diet, medical status, and even the location where this person may have been. These findings introduce an additional form of trace evidence from skin-associated lifestyle chemicals found on personal belongings. Such information could help a criminal investigator narrowing down the owner of an object found at a crime scene, such as a suspect or missing person.
Journal Article
Intermittent Hypoxia and Hypercapnia, a Hallmark of Obstructive Sleep Apnea, Alters the Gut Microbiome and Metabolome
2018
Intestinal dysbiosis mediates various cardiovascular diseases comorbid with OSA. To understand the role of dysbiosis in cardiovascular and metabolic disease caused by OSA, we systematically study the effect of intermittent hypoxic/hypercapnic stress (IHH, mimicking OSA) on gut microbes in an animal model. We take advantage of a longitudinal study design and paired omics to investigate the microbial and molecular dynamics in the gut to ascertain the contribution of microbes on intestinal metabolism in IHH. We observe microbe-dependent changes in the gut metabolome that will guide future research on unrecognized mechanistic links between gut microbes and comorbidities of OSA. Additionally, we highlight novel and noninvasive biomarkers for OSA-linked cardiovascular and metabolic disorders. Obstructive sleep apnea (OSA) is a common disorder characterized by episodic obstruction to breathing due to upper airway collapse during sleep. Because of the episodic airway obstruction, intermittently low O 2 (hypoxia) and high CO 2 (hypercapnia) ensue. OSA has been associated with adverse cardiovascular and metabolic outcomes, although data regarding potential causal pathways are still evolving. As changes in inspired O 2 and CO 2 can affect the ecology of the gut microbiota and the microbiota has been shown to contribute to various cardiometabolic disorders, we hypothesized that OSA alters the gut ecosystem, which, in turn, exacerbates the downstream physiological consequences. Here, we model human OSA and its cardiovascular consequence using Ldlr −/− mice fed a high-fat diet and exposed to intermittent hypoxia and hypercapnia (IHH). The gut microbiome and metabolome were characterized longitudinally (using 16S rRNA amplicon sequencing and untargeted liquid chromatography-tandem mass spectrometry [LC-MS/MS]) and seen to covary during IHH. Joint analysis of microbiome and metabolome data revealed marked compositional changes in both microbial (>10%, most remarkably in Clostridia ) and molecular (>22%) species in the gut. Moreover, molecules that altered in abundance included microbe-dependent bile acids, enterolignans, and fatty acids, highlighting the impact of IHH on host-commensal organism cometabolism in the gut. Thus, we present the first evidence that IHH perturbs the gut microbiome functionally, setting the stage for understanding its involvement in cardiometabolic disorders. IMPORTANCE Intestinal dysbiosis mediates various cardiovascular diseases comorbid with OSA. To understand the role of dysbiosis in cardiovascular and metabolic disease caused by OSA, we systematically study the effect of intermittent hypoxic/hypercapnic stress (IHH, mimicking OSA) on gut microbes in an animal model. We take advantage of a longitudinal study design and paired omics to investigate the microbial and molecular dynamics in the gut to ascertain the contribution of microbes on intestinal metabolism in IHH. We observe microbe-dependent changes in the gut metabolome that will guide future research on unrecognized mechanistic links between gut microbes and comorbidities of OSA. Additionally, we highlight novel and noninvasive biomarkers for OSA-linked cardiovascular and metabolic disorders.
Journal Article
SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information
by
Dührkop Kai
,
Ludwig, Marcus
,
Dorrestein, Pieter C
in
Computer applications
,
Mass spectra
,
Mass spectrometry
2019
Mass spectrometry is a predominant experimental technique in metabolomics and related fields, but metabolite structural elucidation remains highly challenging. We report SIRIUS 4 (https://bio.informatik.uni-jena.de/sirius/), which provides a fast computational approach for molecular structure identification. SIRIUS 4 integrates CSI:FingerID for searching in molecular structure databases. Using SIRIUS 4, we achieved identification rates of more than 70% on challenging metabolomics datasets.SIRIUS 4 is a fast and highly accurate tool for molecular structure interpretation from mass-spectrometry-based metabolomics data.
Journal Article