Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
33
result(s) for
"Mendez, Joshua H"
Sort by:
Structural basis for substrate selection by the SARS-CoV-2 replicase
2023
The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication–transcription complex (RTC)
1
. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir
2
. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate
3
,
4
. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation
5
. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5′ RNA cap
6
.
Cryo-EM is used to visualize the SARS-CoV-2 RTC bound to each of the natural NTPs as well as remdesivir triphosphate (RDV-TP) in states poised for incorporation, explaining the interactions required for NTP recognition and RDV-TP selectivity.
Journal Article
Structure of dimerized assimilatory NADPH-dependent sulfite reductase reveals the minimal interface for diflavin reductase binding
2025
Escherichia coli
NADPH-dependent assimilatory sulfite reductase (SiR) reduces sulfite by six electrons to make sulfide for incorporation into sulfur-containing biomolecules. SiR has two subunits: an NADPH, FMN, and FAD-binding diflavin flavoprotein and a siroheme/Fe
4
S
4
cluster-containing hemoprotein. The molecular interactions that govern subunit binding have been unknown since the discovery of SiR over 50 years ago because SiR is flexible, thus has been intransigent for traditional high-resolution structural analysis. We use a combination of the chameleon® plunging system with a fluorinated lipid to overcome the challenges of preserving a flexible molecule to determine a 2.78 Å-resolution cryo-EM structure of a minimal heterodimer complex. Chameleon®, combined with the fluorinated lipid, overcomes persistent denaturation at the air-water interface. Using a previously characterized minimal heterodimer reduces the heterogeneity of a structurally heterogeneous complex to a level that we analyze using multi-conformer cryo-EM image analysis algorithms. Here, we report the near-atomic resolution structure of the flavoprotein/hemoprotein complex, revealing how they interact in a minimal interface. Further, we determine the structural elements that discriminate between pairing a hemoprotein with a diflavin reductase, as in the
E. coli
homolog, or a ferredoxin partner, as in maize (
Zea mays
).
Here, the authors probe
E. coli
NADPH-dependent assimilatory sulfite reductase (SiR) by determining the cryo-EM structure of the SiRFP/SiRHP dimer, revealing the minimal binding interface for diflavin reductase and electron transfer partner binding.
Journal Article
Throughput and resolution with a next-generation direct electron detector
by
Randolph, Peter
,
Mendez, Joshua H.
,
Stagg, Scott
in
3d reconstruction
,
advances in microscope hardware
,
Cameras (Photography)
2019
Direct electron detectors (DEDs) have revolutionized cryo-electron microscopy (cryo-EM) by facilitating the correction of beam-induced motion and radiation damage, and also by providing high-resolution image capture. A new-generation DED, the DE64, has been developed by Direct Electron that has good performance in both integrating and counting modes. The camera has been characterized in both modes in terms of image quality, throughput and resolution of cryo-EM reconstructions. The modulation transfer function, noise power spectrum and detective quantum efficiency (DQE) were determined for both modes, as well as the number of images per unit time. Although the DQE for counting mode was superior to that for integrating mode, the data-collection throughput for this mode was more than ten times slower. Since throughput and resolution are related in single-particle cryo-EM, data for apoferritin were collected and reconstructed using integrating mode, integrating mode in conjunction with a Volta phase plate (VPP) and counting mode. Only the counting-mode data resulted in a better than 3 Å resolution reconstruction with similar numbers of particles, and this increased performance could not be compensated for by the increased throughput of integrating mode or by the increased low-frequency contrast of integrating mode with the VPP. These data show that the superior image quality provided by counting mode is more important for high-resolution cryo-EM reconstructions than the superior throughput of integrating mode.
Journal Article
Fully automated multi-grid cryoEM screening using Smart Leginon
by
Chua, Eugene Y. D.
,
Sawh, Anjelique
,
Bepler, Tristan
in
Algorithms
,
Automation
,
computer vision
2023
Single-particle cryo-electron microscopy (cryoEM) is a swiftly growing method for understanding protein structure. With increasing demand for high-throughput, high-resolution cryoEM services comes greater demand for rapid and automated cryoEM grid and sample screening. During screening, optimal grids and sample conditions are identified for subsequent high-resolution data collection. Screening is a major bottleneck for new cryoEM projects because grids must be optimized for several factors, including grid type, grid hole size, sample concentration, buffer conditions, ice thickness and particle behavior. Even for mature projects, multiple grids are commonly screened to select a subset for high-resolution data collection. Here, machine learning and novel purpose-built image-processing and microscope-handling algorithms are incorporated into the automated data-collection software Leginon , to provide an open-source solution for fully automated high-throughput grid screening. This new version, broadly called Smart Leginon , emulates the actions of an operator in identifying areas on the grid to explore as potentially useful for data collection. Smart Leginon Autoscreen sequentially loads and examines grids from an automated specimen-exchange system to provide completely unattended grid screening across a set of grids. Comparisons between a multi-grid autoscreen session and conventional manual screening by 5 expert microscope operators are presented. On average, Autoscreen reduces operator time from ∼6 h to <10 min and provides a percentage of suitable images for evaluation comparable to the best operator. The ability of Smart Leginon to target holes that are particularly difficult to identify is analyzed. Finally, the utility of Smart Leginon is illustrated with three real-world multi-grid user screening/collection sessions, demonstrating the efficiency and flexibility of the software package. The fully automated functionality of Smart Leginon significantly reduces the burden on operator screening time, improves the throughput of screening and recovers idle microscope time, thereby improving availability of cryoEM services.
Journal Article
Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy
by
Saecker, Ruth M.
,
Mueller, Andreas U.
,
Budell, William C.
in
631/337/572
,
631/535/1258/1259
,
Bacteria
2024
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing
Escherichia coli
σ
70
–RNAP and the λP
R
promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand ‘read-out’ extends, the RNAP clamp closes, expelling an inhibitory σ
70
domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.
Time-resolved cryo-EM captured transient intermediates during
E. coli
RNAP promoter melting, revealing conformational changes affecting stepwise transcription bubble opening. Results inform how DNA sequence controls bacterial transcription initiation.
Journal Article
Structure of dimerized assimilatory NADPH-dependent sulfite reductase reveals the minimal interface for diflavin reductase binding
by
Mendez, Joshua H
,
Walia, Nidhi
,
Stroupe, M Elizabeth
in
Air-water interface
,
Denaturation
,
Escherichia coli
2025
NADPH-dependent assimilatory sulfite reductase (SiR) reduces sulfite by six electrons to make sulfide for incorporation into sulfur-containing biomolecules. SiR has two subunits: an NADPH, FMN, and FAD-binding diflavin flavoprotein and a siroheme/Fe
S
cluster-containing hemoprotein. The molecular interactions that govern subunit binding have been unknown since the discovery of SiR over 50 years ago because SiR is flexible, thus has been intransigent for traditional high-resolution structural analysis. We used a combination of the chameleon
plunging system with a fluorinated lipid to overcome the challenges of preserving a flexible molecule to determine a 2.78 Å-resolution cryo-EM structure of a minimal heterodimer complex. chameleon
, combined with the fluorinated lipid, overcame persistent denaturation at the air-water interface. Using a previously characterized minimal heterodimer reduced the heterogeneity of a structurally heterogeneous complex to a level that could be analyzed using multi-conformer cryo-EM image analysis algorithms. Here, we report the first near-atomic resolution structure of the flavoprotein/hemoprotein complex, revealing how they interact in a minimal interface. Further, we determined the structural elements that discriminate between pairing a hemoprotein with a diflavin reductase, as in the
homolog, or a ferredoxin partner, as in maize (
).
Journal Article
Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy
2024
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing
σ
-RNAP and the λP
promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand \"read-out\" extends, the RNAP clamp closes, expelling an inhibitory σ
domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.
Journal Article
Signal Transduction in an Enzymatic Photoreceptor Revealed by Cryo-Electron Microscopy
by
Tek, Narsingh Malla
,
Mendez, Joshua H
,
Srinivasan Muniyappan
in
Bacteria
,
Chromophores
,
Electron microscopy
2023
Phytochromes are essential photoreceptor proteins in plants with homologs in bacteria and fungi that regulate a variety of important environmental responses. They display a reversible photocycle between two distinct states, the red-light absorbing Pr and the far-red light absorbing Pfr, each with its own structure. The reversible Pr to Pfr photoconversion requires covalently bound bilin chromophore and regulates the activity of a C-terminal enzymatic domain, which is usually a histidine kinase (HK). In plants, phytochromes translocate to nucleus where the C-terminal effector domain interacts with protein interaction factors (PIFs) to induce gene expression. In bacteria, the HK phosphorylates a response-regulator (RR) protein triggering downstream gene expression through a two-component signaling pathway. Although plant and bacterial phytochromes share similar structural composition, they have contrasting activity in the presence of light with most BphPs being active in the dark. The molecular mechanism that explains bacterial and plant phytochrome signaling has not been well understood due to limited structures of full-length phytochromes with enzymatic domain resolved at or near atomic resolution in both Pr and Pfr states. Here, we report the first Cryo-EM structures of a wild-type bacterial phytochrome with a HK enzymatic domain, determined in both Pr and Pfr states, between 3.75 and 4.13 Å resolution, respectively. Furthermore, we capture a distinct Pr/Pfr heterodimer of the same protein as potential signal transduction intermediate at 3.75 Å resolution. Our three Cryo-EM structures of the distinct signaling states of BphPs are further reinforced by Cryo-EM structures of the truncated PCM of the same protein determined for the Pr/Pfr heterodimer as well as Pfr state. These structures provide insight into the different light-signaling mechanisms that could explain how bacteria and plants see the light.Competing Interest StatementThe authors have declared no competing interest.