Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Meneboo, Jean‐Pascal"
Sort by:
MET variants with activating N‐lobe mutations identified in hereditary papillary renal cell carcinomas still require ligand stimulation
2025
In hereditary papillary renal cell carcinoma (HPRCC), the hepatocyte growth factor receptor (MET) receptor tyrosine kinase (RTK) mutations recorded to date are located in the kinase domain and lead to constitutive MET activation. This contrasts with MET mutations identified in non‐small‐cell lung cancer (NSCLC), which lead to exon 14 skipping and deletion of a regulatory domain: In this latter case, the mutated receptor still requires ligand stimulation. Sequencing of MET in samples from 158 HPRCC and 2808 NSCLC patients revealed 10 uncharacterized mutations. Four of these, all found in HPRCC and leading to amino acid substitutions in the N‐lobe of the MET kinase, proved able to induce cell transformation, which was further enhanced by hepatocyte growth factor (HGF) stimulation: His1086Leu, Ile1102Thr, Leu1130Ser, and Cis1125Gly. Similar to the variant resulting in MET exon 14 skipping, the two N‐lobe MET variants His1086Leu and Ile1102Thr were found to require stimulation by HGF in order to strongly activate downstream signaling pathways and epithelial cell motility. The Ile1102Thr mutation also displayed transforming potential, promoting tumor growth in a xenograft model. In addition, the N‐lobe‐mutated MET variants were found to trigger a common HGF‐stimulation‐dependent transcriptional program, consistent with an observed increase in cell motility and invasion. Altogether, this functional characterization revealed that N‐lobe variants still require ligand stimulation, in contrast to other RTK variants. This suggests that HGF expression in the tumor microenvironment is important for tumor growth. The sensitivity of these variants to MET inhibitors opens the way for use of targeted therapies for patients harboring the corresponding mutations.
MET variants in the N‐lobe of the kinase domain, found in hereditary papillary renal cell carcinoma, require ligand stimulation to promote cell transformation, in contrast to other RTK variants. This suggests that HGF expression in the microenvironment is important for tumor growth in such patients. Their sensitivity to MET inhibitors opens the way for use of targeted therapies in these patients.
Journal Article
Full-length RNA-Seq of the RHOH gene in human B cells reveals new exons and splicing patterns
2024
The RhoH protein is a member of the Ras superfamily of guanosine triphosphate-binding proteins. RhoH is an atypical Rho family member that is always GTP-bound and thus always activated. It is restrictively expressed in normal hematopoietic cells, where it is a negative regulator of cell growth and survival. We previously analyzed the
RHOH
gene structure and demonstrated that this gene is composed of 7 exons, one single encoding exon located at the 3ʹ extremity of the gene, preceded by 6 noncoding exons. To further understand the transcription events associated with this gene, we performed full-length RNA-Seq on 12 B-cell lines. We identified new exons, new splice events and new splice sites, leading to the discovery of 38
RHOH
mRNA molecules, 27 of which have never been described before. Here, we also describe new fusion transcripts. Moreover, our method allowed quantitative measurements of the different mRNA species relative to each other in relation to B-cell differentiation.
Journal Article
MET exon 14 skipping mutation is a hepatocyte growth factor ( HGF )‐dependent oncogenic driver in vitro and in humanised HGF knock‐in mice
by
Bouchekioua‐Bouzaghou, Katia
,
Farage, Enoir
,
Kherrouche, Zoulika
in
Animals
,
c-Met protein
,
Carcinoma, Non-Small-Cell Lung - pathology
2023
Exon skipping mutations of the MET receptor tyrosine kinase (METex14), increasingly reported in cancers, occur in 3–4% of non–small‐cell lung cancer (NSCLC). Only 50% of patients have a beneficial response to treatment with MET‐tyrosine kinase inhibitors (TKIs), underlying the need to understand the mechanism of METex14 oncogenicity and sensitivity to TKIs. Whether METex14 is a driver mutation and whether it requires hepatocyte growth factor (HGF) for its oncogenicity in a range of
in vitro
functions and
in vivo
has not been fully elucidated from previous preclinical models. Using CRISPR/Cas9, we developed a METex14/WT isogenic model in nontransformed human lung cells and report that the METex14 single alteration was sufficient to drive MET‐dependent
in vitro
anchorage‐independent survival and motility and
in vivo
tumorigenesis, sensitising tumours to MET‐TKIs. However, we also show that human HGF (hHGF) is required, as demonstrated
in vivo
using a humanised HGF knock‐in strain of mice and further detected in tumour cells of METex14 NSCLC patient samples. Our results also suggest that METex14 oncogenicity is not a consequence of an escape from degradation in our cell model. Thus, we developed a valuable model for preclinical studies and present results that have potential clinical implication.
Journal Article
Comprehensive map of the regulatory network triggered by MET exon 14 skipping reveals important involvement of the RAS-ERK signaling pathway
2025
The MET exon 14 skipping mutation (named METex14Del) described in lung cancer leads to prolonged activation of signaling pathways and aberrant cell responses, but the link between HGF signaling and cell responses remains unclear. A putative lung cancer regulatory network of influential transcription factors was constructed from the transcriptomes of lung cancer cell lines. Transcriptomic data from METex14Del-expressing cells, stimulated or not by HGF, were mapped onto this lung cancer reference network and revealed activation of a major regulatory node composed mainly by the highly influential transcription factors ETS1, FOSL1 and SMAD3. HGF activation of METex14Del receptor induced the expression and phosphorylation of these three master regulators and the expression of their predicted target genes involved in migration and invasion. All these molecular and biological effects were inhibited by trametinib, a MEK inhibitor, which was potentiated by combination with capmatinib, a MET inhibitor. New mapping with transcriptomic data from trametinib-treated METex14Del cells validated the key role of the RAS-ERK pathway signaling in the activation of ETS1, FOSL1 and SMAD3 regulators and the induction of their target genes in HGF-activated METex14Del receptor. Thus, we report an original and powerful strategy to uncover key regulators, including transcription factors that have not been widely described in METex14Del signaling, such as SMAD3. These factors are activated by specific signaling pathways and could provide a novel therapeutic strategy involving a combination of receptor and signaling inhibitors.
Journal Article
Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease
2020
The molecular mechanisms underlying caudal-to-rostral progression of Lewy body pathology in Parkinson’s disease remain poorly understood. Here, we identified transcriptomic signatures across brain regions involved in Braak Lewy body stages in non-neurological adults from the Allen Human Brain Atlas. Among the genes that are indicative of regional vulnerability, we found known genetic risk factors for Parkinson’s disease:
SCARB2
,
ELOVL7, SH3GL2
,
SNCA
,
BAP1
, and
ZNF184
. Results were confirmed in two datasets of non-neurological subjects, while in two datasets of Parkinson’s disease patients we found altered expression patterns. Co-expression analysis across vulnerable regions identified a module enriched for genes associated with dopamine synthesis and microglia, and another module related to the immune system, blood-oxygen transport, and endothelial cells. Both were highly expressed in regions involved in the preclinical stages of the disease. Finally, alterations in genes underlying these region-specific functions may contribute to the selective regional vulnerability in Parkinson’s disease brains.
Keo et al. perform a meta-analysis of region-specific transcriptomic profiles across different Braak stages. They identify genes and modules that may be involved in the selective regional vulnerability and the progression of Parkinson’s disease.
Journal Article
Effects of Immunoglobulins G From Systemic Sclerosis Patients in Normal Dermal Fibroblasts: A Multi-Omics Study
by
Vivier, Solange
,
Dubucquoi, Sylvain
,
Chepy, Aurélien
in
autoantibodies
,
Immunology
,
Life Sciences
2022
Autoantibodies (Aabs) are frequent in systemic sclerosis (SSc). Although recognized as potent biomarkers, their pathogenic role is debated. This study explored the effect of purified immunoglobulin G (IgG) from SSc patients on protein and mRNA expression of dermal fibroblasts (FBs) using an innovative multi-omics approach. Dermal FBs were cultured in the presence of sera or purified IgG from patients with diffuse cutaneous SSc (dcSSc), limited cutaneous SSc or healthy controls (HCs). The FB proteome and transcriptome were explored using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and microarray assays, respectively. Proteomic analysis identified 3,310 proteins. SSc sera and purified IgG induced singular protein profile patterns. These FB proteome changes depended on the Aab serotype, with a singular effect observed with purified IgG from anti-topoisomerase-I autoantibody (ATA) positive patients compared to HC or other SSc serotypes. IgG from ATA positive SSc patients induced enrichment in proteins involved in focal adhesion, cadherin binding, cytosolic part, or lytic vacuole. Multi-omics analysis was performed in two ways: first by restricting the analysis of the transcriptomic data to differentially expressed proteins; and secondly, by performing a global statistical analysis integrating proteomics and transcriptomics. Transcriptomic analysis distinguished 764 differentially expressed genes and revealed that IgG from dcSSc can induce extracellular matrix (ECM) remodeling changes in gene expression profiles in FB. Global statistical analysis integrating proteomics and transcriptomics confirmed that IgG from SSc can induce ECM remodeling and activate FB profiles. This effect depended on the serotype of the patient, suggesting that SSc Aab might play a pathogenic role in some SSc subsets.
Journal Article
Characteristics and impact of infiltration of B-cells from systemic sclerosis patients in a 3D healthy skin model
2024
In systemic sclerosis (SSc), B-cells are activated and present in the skin and lung of patients where they can interact with fibroblasts. The precise impact and mechanisms of the interaction of B-cells and fibroblasts at the tissular level are poorly studied.
We investigated the impact and mechanisms of B-cell/fibroblast interactions in cocultures between B-cells from patients with SSc and 3-dimensional reconstituted healthy skin model including fibroblasts, keratinocytes and extracellular matrix.
The quantification and description of the B-cell infiltration in 3D cocultures were performed using cells imagery strategy and cytometry. The effect of coculture on the transcriptome of B-cells and fibroblasts was studied with bulk and single-cell RNA sequencing approaches. The mechanisms of this interaction were studied by blocking key cytokines like IL-6 and TNF.
We showed a significant infiltration of B-cells in the 3D healthy skin model. The amount but not the depth of infiltration was higher with B-cells from SSc patients and with activated B-cells. B-cell infiltrates were mainly composed of naïve and memory cells, whose frequencies differed depending on B-cells origin and activation state: infiltrated B-cells from patients with SSc showed an activated profile and an overexpression of immunoglobulin genes compared to circulating B-cells before infiltration. Our study has shown for the first time that activated B-cells modified the transcriptomic profile of both healthy and SSc fibroblasts, toward a pro-inflammatory (TNF and IL-17 signaling) and interferon profile, with a key role of the TNF pathway.
B-cells and 3D skin cocultures allowed the modelization of B-cells infiltration in tissues observed in SSc, uncovering an influence of the underlying disease and the activation state of B-cells. We showed a pro-inflammatory effect on skin fibroblasts and pro-activation effect on infiltrating B-cells during coculture. This reinforces the role of B-cells in SSc and provide potential targets for future therapeutic approach in this disease.
Journal Article
Long-term patient-derived ovarian cancer organoids closely recapitulate tumor of origin and clinical response
2025
Background
Ovarian cancers are the second cause of death from gynecological cancers worldwide, due to a late diagnosis combined with the development of resistance to chemotherapy. However, half of these cancers present alterations in Homologous Recombination (HR), making them sensitive to inhibitors of the PARP protein (PARPi), involved in DNA repair. Nevertheless, identifying patients who respond to chemotherapy and selecting those eligible for PARPi remains a challenge for clinicians. In this context, the use of Patient-Derived Tumor Organoids (PDTO) for predictive functional testing represents an interesting prospect for clinical decision making.
Methods
Here we established a panel of 37 long-term PDTO models of various histological subtypes from 31 ovarian cancer patients. Histological and molecular profiles of PDTO were compared to tumor sample of origin using immunohistochemical analyses and global approaches (copy number variation and transcriptomic profiling). PDTO models were exposed to standard drugs for ovarian cancer patients, including PARPi, and response was assessed using viability assay. To further define the HR status of PDTO, we performed a functional assay evaluating the ability of PDTO to initiate HR (RECAP test) using automated histo-imaging quantitative analysis of RAD51 foci, as well as an NGS analysis based on the sequencing of an HR-related genes panel to obtain a Genome Instability Score (GIS).
Results
We demonstrated that PDTO mimicked histological and expression of tumor markers of paired tumors. Moreover, non-negative matrix factorization approach revealed that PDTO recapitulated the transcriptomic profile of the cancer component from their sample of origin. Screening of chemotherapeutic drugs showed that PDTO exhibit heterogeneous responses, and that response of PDTO from high-grade serous ovarian carcinoma to carboplatin recapitulated patient response to first-line treatment. Additionally, the detection of HRD phenotype of PDTO using functional assay was associated with the results of the HRD test Genomic Instability Scar (GIScar).
Conclusion
Although larger-scale investigations are needed to confirm the predictive potential of PDTO, these results provide further evidence of the potential interest of ovarian PDTO for functional precision medicine.
Journal Article
MET variants with activating N-lobe mutations identified in hereditary papillary renal cell carcinomas still require ligand stimulation
by
Estevam, Gabriella O
,
Vinchent, Audrey
,
Damour, Isabelle
in
Amino acids
,
c-Met protein
,
Cancer Biology
2025
In hereditary papillary renal cell carcinoma (HPRCC), the hepatocyte growth factor receptor (MET) receptor tyrosine kinase (RTK) mutations recorded to date are located in the kinase domain and lead to constitutive MET activation. This contrasts with MET mutations identified in non-small cell lung cancer (NSCLC), which lead to exon 14 skipping and deletion of a regulatory domain: in this latter case, the mutated receptor still requires ligand stimulation. Sequencing of MET in samples from 158 HPRCC and 2808 NSCLC patients revealed ten uncharacterized mutations. Four of these, all found in HPRCC and leading to amino acid substitutions in the N-lobe of the MET kinase, proved able to induce cell transformation, which was further enhanced by hepatocyte growth factor (HGF) stimulation: His1086Leu, Ile1102Thr, Leu1130Ser and Cis1125Gly. Similar to the variant resulting in MET exon 14 skipping, the two N-lobe MET variants His1086Leu and Ile1102Thr were found to require stimulation by HGF in order to strongly activate downstream signaling pathways and epithelial cell motility. The Ile1102Thr mutation also displayed transforming potential, promoting tumor growth in a xenograft model. In addition, the N-lobe-mutated MET variants were found to trigger a common HGF-stimulation-dependent transcriptional program, consistent with an observed increase in cell motility and invasion. Altogether, this functional characterization revealed that N-lobe variants still require ligand stimulation, in contrast to other RTK variants. This suggests that HGF expression in the tumor microenvironment is important for tumor growth. The sensitivity of these variants to MET inhibitors opens the way for use of targeted therapies for patients harboring the corresponding mutations.
Journal Article