Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,068
result(s) for
"Meng, J. J."
Sort by:
Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere
2013
Composition and size distribution of atmospheric aerosols from Xi'an city (~400 m, altitude) in inland China during the spring of 2009 including a massive dust event on 24 April were measured and compared with a parallel measurement at the summit (2060 m, altitude) of Mt. Hua, an alpine site nearby Xi'an. EC (elemental carbon), OC (organic carbon) and major ions in the city were 2–22 times higher than those on the mountaintop during the whole sampling period. Compared to that in the non-dust period a sharp increase in OC was observed at both sites during the dust period, which was mainly caused by an input of biogenic organics from the Gobi desert. However, adsorption/heterogeneous reaction of gaseous organics with dust was another important source of OC in the urban, contributing 22% of OC in the dust event. In contrast to the mountain atmosphere where fine particles were less acidic when dust was present, the urban fine particles became more acidic in the dust event than in the non-dust event, mainly due to enhanced heterogeneous formation of nitrate and diluted NH3. Cl− and NO3− in the urban air during the dust event significantly shifted toward coarse particles. Such redistributions were further pronounced on the mountaintop when dust was present, resulting in both ions almost entirely staying in coarse particles. On the contrary, no significant spatial difference in size distribution of SO42− was found between the urban ground surface and the mountain atmosphere, which dominated in the fine mode (<2.1 μm) during the nonevent and comparably distributed in the fine (<2.1 μm) and coarse (>2.1 μm) modes during the dust event.
Journal Article
Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation
2016
Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to have a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of Gram-positive pathogenic and reduction in bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine-induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management.
Journal Article
Mapping the world’s free-flowing rivers
2019
Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
A comprehensive assessment of the world’s rivers and their connectivity shows that only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length.
Journal Article
Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 – Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate
A total suspended particulate (TSP) sample was collected hourly in Xi'an, an inland megacity of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00−12 March 10:00 LT), along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC) and nitrogen (WSON), inorganic ions and elements to investigate chemistry evolution of dust particles. Hourly concentrations of Cl−, NO3−, SO42−, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m−3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that during the whole observation period NH4+ and NO3− were linearly correlated with each other (r2=0.76) with a molar ratio of 1 : 1, while SO42− and Cl− were well correlated with Na+, Ca2+, Mg2+ and K+ (r2 > 0.85). Size distributions of NH4+ and NO3− presented a same pattern, which dominated in the coarse mode (> 2.1 μm) during the event and predominated in the fine mode (< 2.1 μm) during the non-event. SO42− and Cl− also dominated in the coarse mode during the event hours, but both exhibited two equivalent peaks in both the fine and the coarse modes during the non-event, due to the fine-mode accumulations of secondarily produced SO42− and biomass-burning-emitted Cl- and the coarse-mode enrichments of urban soil-derived SO42− and Cl−. Linear fit regression analysis further indicated that SO42− and Cl− in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3− in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic salts such as Na2SO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3− during the dust period were secondarily produced via this pathway, with the remaining derived from the Gobi desert and Loess Plateau, while SO42− in the event almost entirely originated from the desert regions. Such cases are different from those in the East Asian continental outflow region, where during Asia dust storm events SO42− is secondarily produced and concentrates in sub-micrometer particles as (NH4)2SO4 and/or NH4HSO4. To the best of our knowledge, the current work for the first time revealed an infant state of the East Asian dust ageing process in the regions near the source, which is helpful for researchers to understand the panorama of East Asian dust ageing process from the desert area to the downwind region.
Journal Article
The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer
by
Tian, K.
,
Meng, J. H.
,
Yang, Q. Q.
in
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
,
Crystal lattices
2024
The wide band gap semiconductor Ga
2
O
3
has become an excellent UV detection material due to its suitable band gap, high crystalline quality and thermal stability. In this paper, the microstructure of Ga
2
O
3
with different thicknesses is characterized and the solar-blind detection performance of Ga
2
O
3
/p-Si heterojunctions are further investigated. XRD and UV–VIS demonstrate that Ga
2
O
3
sputtered for 20 min is amorphous with a band gap of 4.98 eV, as the sputtering time increases, Ga
2
O
3
grows along the (002) crystal plane and the band gap increases. XPS reveals that the lattice oxygen content in the Ga
2
O
3
increases with the sputtering time, however, the Ga
3+
content reaches a peak in Ga
2
O
3
sputtered for 1.5 h. And the increasing of the binding energy between Ga-O in Ga
2
O
3
/p-Si heterojunctions accelerates response speed. Electrical experiments show that the heterojunction consisting of sputtered 1.5 h Ga
2
O
3
and p-Si reaches a higher PDCR, with a value of 6684 at 5.7 V. Meanwhile, the rise and decay time of the heterojunction are 0.13 s and 0.14 s at 0 V, and the decay time gradually increases from 0.1 to 0.7 s with increasing the applied voltage. However, insertion of 20 nm Si-doped Ga
2
O
3
as a hole-blocking layer at the interface of p-Si and Ga
2
O
3
remarkably declines the decay time under various applied biases and causes no obvious damage to the photo current of the heterojunction.
Journal Article
Wild boars as sources for infectious diseases in livestock and humans
2009
Wild boars (Sus scrofa) are indigenous in many countries in the world. These free-living swine are known reservoirs for a number of viruses, bacteria and parasites that are transmissible to domestic animals and humans. Changes of human habitation to suburban areas, increased use of lands for agricultural purposes, increased hunting activities and consumption of wild boar meat have increased the chances of exposure of wild boars to domestic animals and humans. Wild boars can act as reservoirs for many important infectious diseases in domestic animals, such as classical swine fever, brucellosis and trichinellosis, and in humans, diseases such as hepatitis E, tuberculosis, leptospirosis and trichinellosis. For examples, wild boars are reservoirs for hepatitis E virus, and cluster cases of hepatitis E have been reported in Japan of humans who consumed wild boar meat. In Canada, an outbreak of trichinellosis was linked to the consumption of wild boar meat. The incidence of tuberculosis owing to Mycobacterium bovis has increased in wild boars, thus posing a potential concern for infections in livestock and humans. It has also been documented that six hunters contracted Brucella suis infections from wild swine in Florida. This article discusses the prevalence and risk of infectious agents in wild boars and their potential transmission to livestock and humans.
Journal Article
Tunnel electroresistance through organic ferroelectrics
2016
Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates.
Ferroelectric organic materials can be used for tunnel barriers in memory devices as a cheaper and eco-friendly replacement of their inorganic counterparts. Here, Tian
et al
. use poly(vinylidene fluoride) with 1–2 layer thickness to achieve giant tunnel electroresistance of 1,000% at room temperature.
Journal Article
Self-rectifying effect in Au/Al2O3/Si resistive memory structure
2022
To solve the crosstalk problem when the integration density of resistive random access memory (RRAM) devices increase, RRAM with self-rectifying function is required. Herein, the Au/10 nm Al2O3/heavily doped p-type Si (p++-Si) structure was fabricated, and bipolar resistive switching and self-rectifying effect were investigated. A rectification of 6.5 × 103 under ±5 V at low-resistive state (LRS) was observed. The rectifying effect is explained by the energy band diagrams of the structure and electrical conduction mechanism at LRS under negative bias is fitted by space charge limited conduction (SCLC) model. Finally, the endurance and retention properties of the structure were tested. This work would provide insights for further research on the RRAM device with self-rectifying effect, which can alleviate the crosstalk effect without additional switching elements in integrated circuit.
Journal Article
Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey
2018
Rural household energy use for cooking and heating is an important source of air pollutants in China, as it affects both human health and climate change. However, the magnitude of rural household energy use, especially during the recent rapid socioeconomic transition period, has not been well quantified. Here, we present first-hand nationwide data from a 34,489-household energy-mix survey and a 1,670-household fuel-weighing campaign. We found that the consumption of wood and crop residues in rural China decreased by 63% and 51%, respectively, from 1992 to 2012, and these decreases were much greater than the 15% and 8%, respectively, reported by the International Energy Agency and Food and Agriculture Organization. The rapid residential energy transition over these two decades was primarily driven by the rapid socioeconomic development. One important implication of this transition is the significant reduction in the emissions of major air pollutants, especially incomplete combustion products leading to significant impacts on health and climate.
Use of wood and crop residue for cooking and heating in rural China is a significant source of carbon emissions and air pollution. Using a survey of more than 34,000 households, researchers show that between 1992 and 2012 usage of these fuels decreased by much more than previous estimates, due primarily to rising incomes.
Journal Article
Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009 – Part 2: Impact of dust storm on organic aerosol composition and size distribution
2012
PM10 and size-resolved particles (9-stage) were simultaneously collected at Mt. Hua and Mt. Tai in central and east China during the spring of 2009 including a massive dust storm occurring on 24 April (named as DS II), and determined for organic compounds to investigate the impact of dust storm on organic aerosols. High molecular weight (HMW) n-alkanes, fatty acids, and fatty alcohols and trehalose sharply increased and almost entirely stayed in coarse particles when dust storm was present, suggesting that high level of organic aerosols in the mountain atmospheres during the event largely originated from Gobi desert plants. However, most anthropogenic aerosols (e.g. PAHs, and aromatic and dicarboxylic acids) during the event significantly decreased due to a dilution effect, indicating that anthropogenic aerosols in the mountain atmospheres during the nonevent period largely originated from local/regional sources rather than from long-range transport. Trehalose, a metabolism product enriched in biota in dry conditions, was 62 ± 78 and 421 ± 181 ng m−3 at Mt. Hua and Mt. Tai during DS II, 10–30 times higher than that in the nonevent time, indicating that trehalose may be a tracer for dust emissions from Gobi desert regions. Molecular compositions of organic aerosols in the mountain samples demonstrate that domestic coal burning is still the major source of PAHs in China. n-Alkanes and fatty acids showed a bimodal size distribution during the nonevent with a major peak in fine mode (<2.1 μm) and a small peak in coarse mode (>2.1 μm). The coarse mode significantly increased and even dominated over the whole size range when dust was present. Glucose and trehalose were also dominant in the coarse mode especially in the DS II time. PAHs and levoglucosan concentrated in fine particles with no significant changes in size distribution when dust storm occurred. However, phthalic and succinic acids showed bimodal size distribution pattern with an increase in coarse mode during the event, because both are formed via a gas phase oxidation and a subsequent condensation/adsorption onto aerosol phase. In contrast, terephthalic and malic acids are mostly emitted from combustion process as fine particles, thus both showed a fine mode pattern during the whole campaign with a minor peak in coarse mode caused by an increased coagulation with dust during the event. Geometric mean diameters (GMDs) of the organic aerosols above are in general larger at Mt.~Hua than at Mt. Tai during the nonevent period. We found that during the event GMD of the fine mode organics that derived mostly from the local/regional sources rather than Gobi desert became smaller while GMD of them in coarse mode became larger. Such a splitting in sizes during the event is most likely caused by decreased fine particle coagulation due to dilution and increased adsorption/coagulation with dust.
Journal Article