Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
80
result(s) for
"Meng, Xiangbo"
Sort by:
Atomic and molecular layer deposition in pursuing better batteries
In the past decade, atomic and molecular layer deposition (ALD and MLD), these two sister techniques have been attracting more and more research attention to address technical challenges in various advanced battery systems. The charm of both ALD and MLD lies in their unique mechanism for growing a large variety of functional materials, featuring uniform and conformal films enabled at the atomic/molecular level at low temperature. Using ALD and MLD, to date, there have been many excitements achieved in research. These will ultimately be reflected on technical innovations that will help revolutionize our lifestyles. This invited article gives the first comprehensive review briefing on the journey of ALD and MLD in pursuing better batteries and highlighting many exciting progresses in various advanced battery systems. It is expected that this review will help boost many more efforts in using ALD and MLD for new battery technologies in the coming decade.
Journal Article
Atomic and Molecular Layer Deposition as Surface Engineering Techniques for Emerging Alkali Metal Rechargeable Batteries
by
Tang, Peng
,
Meng, Xiangbo
,
Sullivan, Matthew
in
alkali metals
,
Analysis
,
atomic layer deposition
2022
Alkali metals (lithium, sodium, and potassium) are promising as anodes in emerging rechargeable batteries, ascribed to their high capacity or abundance. Two commonly experienced issues, however, have hindered them from commercialization: the dendritic growth of alkali metals during plating and the formation of solid electrolyte interphase due to contact with liquid electrolytes. Many technical strategies have been developed for addressing these two issues in the past decades. Among them, atomic and molecular layer deposition (ALD and MLD) have been drawing more and more efforts, owing to a series of their unique capabilities. ALD and MLD enable a variety of inorganic, organic, and even inorganic-organic hybrid materials, featuring accurate nanoscale controllability, low process temperature, and extremely uniform and conformal coverage. Consequently, ALD and MLD have paved a novel route for tackling the issues of alkali metal anodes. In this review, we have made a thorough survey on surface coatings via ALD and MLD, and comparatively analyzed their effects on improving the safety and stability of alkali metal anodes. We expect that this article will help boost more efforts in exploring advanced surface coatings via ALD and MLD to successfully mitigate the issues of alkali metal anodes.
Journal Article
Precisely Engineering Interfaces for High-Energy Rechargeable Lithium Batteries
2025
While we are pursuing a fully electrified society, high-energy rechargeable batteries are undergoing intensive investigation. In this respect, atomic and molecular layer deposition (ALD and MLD) have been drawing increasing interest, due to their unmatched capabilities to precisely modify electrodes’ surfaces for better electrochemical performance. In this work, we reviewed the recent studies using ALD/MLD for interface engineering of several important electrode materials, including nickel (Ni)-rich metal oxide cathodes, silicon (Si), and lithium (Li) anodes in lithium-ion and lithium metal batteries. We particularly discussed the most promising coatings from these studies and explored the underlying mechanisms based on experiments and modeling. We anticipate that this work will inspire more studies using ALD/MLD as an important technique for securing new solutions for batteries.
Journal Article
Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition
by
Meng, Xiangbo
,
Zhang, Gaixia
,
Chen, Weifeng
in
639/301/357/918
,
639/638/161/893
,
639/638/77/886
2013
Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.
Journal Article
NCF4 attenuates colorectal cancer progression by modulating inflammasome activation and immune surveillance
2024
The spatiotemporal regulation of inflammasome activation remains unclear. To examine the mechanism underlying the assembly and regulation of the inflammasome response, here we perform an immunoprecipitation-mass spectrometry analysis of apoptosis-associated speck-like protein containing a CARD (ASC) and identify NCF4/1/2 as ASC-binding proteins. Reduced
NCF4
expression is associated with colorectal cancer development and decreased five-year survival rate in patients with colorectal cancer. NCF4 cooperates with NCF1 and NCF2 to promote NLRP3 and AIM2 inflammasome activation. Mechanistically, NCF4 phosphorylation and puncta distribution switches from the NADPH complex to the perinuclear region, mediating ASC oligomerization, speck formation and inflammasome activation. NCF4 functions as a sensor of ROS levels, to establish a balance between ROS production and inflammasome activation. NCF4 deficiency causes severe colorectal cancer in mice, increases transit-amplifying and precancerous cells, reduces the frequency and activation of CD8
+
T and NK cells, and impairs the inflammasome-IL-18-IFN-γ axis during the early phase of colorectal tumorigenesis. Our study implicates NCF4 in determining the spatial positioning of inflammasome assembly and contributing to inflammasome-mediated anti-tumor responses.
The NADPH oxidase 2 (NOX2) complex is a main reactive oxygen species (ROS) source during inflammation. Here the authors report that NCF4, a subunit of the NOX2 complex, acts a sensor of ROS levels and regulates NLRP3 and AIM2 inflammasome activation, associated with attenuated colorectal cancer progression.
Journal Article
Protective Effect of Glycyrrhizic Acid on Alcoholic Liver Injury in Rats by Modulating Lipid Metabolism
by
Sun, Xiaoke
,
Zhao, Yanyan
,
Yang, Sa
in
18α-glycyrrhizic acid
,
18β-glycyrrhizic acid
,
Acetyl-CoA Carboxylase - genetics
2018
Glycyrrhhizic acid (GA), including 18α-glycyrrhizic acid (18α-GA) and 18β-glycyrrhizic acid (18β-GA), is the main active ingredient of licorice. GA is generally considered an effective pharmacological strategy protecting against hepatic disease; however, the optimal compatibility proportion of 18α-GA and 18β-GA against alcoholic liver disease (ALD) and the underlying mechanism are not well established. Hence, this study was designed to explore the optimal compatibility proportion of 18α-GA and 18β-GA against ALD, followed by investigating the underlying mechanisms. SD rats were administered 40% ethanol once a day, accompanied by treatment with different proportions of 18α-GA and 18β-GA for four weeks. Then all rats were anesthetized with chloral hydrate and blood samples were taken from the abdominal aorta for biochemical assay. Livers were also collected and the liver function, lipid profile, ROS production, and mRNA and protein levels of related genes involved in lipid metabolism were assessed. The results showed that 18α-GA and 18β-GA, particularly at a proportion of 4:6, significantly reduced liver damage, lipid accumulation, and oxidative stress in ethanol-induced rats, as indicated by the decreased levels of alanine aminotransferase (ALT) and aminotransferase (AST) in serum, improvement of liver histopathological changes, regulation of total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), and modulation of superoxide dismutase (SOD), glutathione (GSH), and malonaldehyde (MDA). Moreover, the combination treatment with 18α-GA and 18β-GA substantially reduced the mRNA and protein levels of sterol regulatory element-binding protein-1c (SREBP-1c) and acetyl-coal carboxylase (ACC); meanwhile, increased levels of peroxisome proliferators activated receptor-α (PPAR-α) and carnitine palmitoy transferase-1 (CTP-1) in the liver tissues of ethanol-induced rats. In conclusion, our results indicated that the optimal compatibility proportion of 18α-GA and 18β-GA protecting against ALD was 4:6, and the mechanism was associated with the regulation of oxidative stress and lipid metabolism.
Journal Article
Spatial and temporal characteristics of annual and seasonal precipitation variation in Shijiazhuang region, north China
by
Zhang Shuantang
,
Wang, Ting
,
Liu, Yu
in
Agricultural production
,
Annual
,
Annual precipitation
2021
Understanding spatial and temporal characteristics of annual and seasonal precipitation variation is vital in watershed development and management. In this study, we investigated the spatial and temporal variation characteristics of precipitation and its structure, the correlations between precipitation and large-scale atmospheric circulations in Shijiazhuang region, North China. We used daily precipitation data from 35 meteorological stations for the period 1955–2015 across Shijiazhuang regions. The results show that the number of annual precipitation days at 73.5% of stations showed an upward trend, but the annual precipitation intensity at more than 91% of stations showed a downward trend, indicating that the annual precipitation reduction trend was mainly due to the decrease in annual precipitation intensity. Annual precipitation was negatively correlated with the East Asian Summer Monsoon Index (EASMI), and the negative correlation showed the characteristic of decreasing from north to south. Annual precipitation was positively correlated with the South Asian summer monsoon index (SASMI), and the positive correlation showed the characteristic of decreasing from southwest to northeast.
Journal Article
Deciphering coulombic loss in lithium-ion batteries and beyond
2025
Lithium-ion batteries are pivotal for modern energy storage, yet accurately predicting their lifespan remains a critical challenge. While descriptors like coulombic efficiency are widely used to assess battery longevity, the unclear physical origins of coulombic losses cause semi-quantitative correlation with capacity, complicating battery development. Here, we combine high-precision leakage current and open-circuit-voltage measurements with charge conservation principles to explore microscopic charge consumptions at electrode-electrolyte interfaces across diverse chemistries. We demonstrate that coulombic loss arises from a synergy between local charge neutrality and global charge compensation, reconciling its quantitative correlation to capacity. Contrary to conventional assumptions equating coulombic loss with irreversible capacity loss, this framework resolves systematic overestimations and paradoxical phenomena in existing chemistries. Our findings establish physics-informed criteria for accelerated lifespan evaluation and guide rational design of long-life lithium-ion batteries and beyond.
Conventional electrochemical evaluations severely decelerate the iteration of long-life batteries. Here, the authors unpuzzle the myth of coulombic loss contrary to prevailing understanding. Physical-correlated coulombic-capacity relation is pivotal for rapid battery screening and prognostics.
Journal Article
Using an ensemble Kalman filter method to calibrate parameters of a prediction model for chemical transport from soil to surface runoff
by
Meng, Xiangbo
,
Hu, Bill X.
,
Tong, Juxiu
in
Advection-diffusion equation
,
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
2021
Water pollution from surface runoff is an important non-point pollution source, which has been a great threat to our environment. The model proposed by Gao et al. (
2004
) is of great significance to solve the non-point source pollution problem, which is a numerical advection-diffusion equation (ADE) model for chemical transport from soil to surface runoff. The ensemble Kalman filter (EnKF), the data assimilation (DA) method, is easy to be implemented and widely used in hydrology field. In this study, we use the EnKF method to update model state variables such as chemical concentrations in surface runoff and calibrate model parameters such as water transfer rate in Gao et al. (
2004
) under different study cases, while other model parameters are assumed to be known. The observations are generated from the simulation results based on synthetic real parameters. The objective of this study was to extend the application of the EnKF to the ADE-based prediction model of chemical transport from soil to surface runoff. The results of the predicted chemical concentration in the surface runoff with EnKF are greatly improved than those without EnKF in comparison with the observations, and the updated parameters are close to the real parameters. We explored feasibility of the EnKF method from six factors, including the initial parameter estimate, the ensemble size, the influence of multi-parameters, the assimilation time interval, the infiltration boundary conditions, and the relationship between the standard deviations of the observation error and initial parameter. Different study strategies are proposed for different factors. For assimilation time interval, the key observation can reduce the assimilation frequency. With the situation of much larger observation error covariance than the prediction covariance, we analyzed influences of the standard deviation of the observation error and initial parameter on the feasibility of the EnKF method. According to the study results, it is concluded that the EnKF is efficient to update the parameter for the ADE-based prediction model of chemical transport from soil to surface runoff.
Journal Article
Persistent Lipid Accumulation Leads to Persistent Exacerbation of Endoplasmic Reticulum Stress and Inflammation in Progressive NASH via the IRE1α/TRAF2 Complex
2023
Non-alcoholic steatohepatitis (NASH) is a metabolic disorder that often leads to other severe liver diseases, yet treatment options are limited. Endoplasmic reticulum (ER) stress is an important pathogenetic mechanism of NASH and plays a key role in tandem steatosis as well as liver inflammation. This study aims to develop a progressive NASH model through sustained lipid accumulation and to elucidate its molecular mechanism through IRE1α/TRAF2 complex. Male SD rats were fed a high-fat diet (HFD) for 4, 8, and 12 weeks to induce progressive NASH. MRNA sequencing and PPI analysis were used to screen core genes. Transmission electron microscopy, immunofluorescence staining, ELISA, qRT-PCR, and Western blotting were used at each time point to compare differences between each index of progressive NASH at 4, 8, and 12 weeks. Sustained lipid accumulation led to structural disruption of the ER, a reduction in ER number, and an increase of lipid droplet aggregation in hepatocytes. Persistent lipid accumulation led to a persistent increase in mRNA and protein expression of the IRE1α/TRAF2 complex, IKK/IκB/NF-κB signaling pathway and ASK1/JNK1 signaling pathway, and TNF-α, IL-1β, and IL-6 also continued to increase. Persistent lipid accumulation led to a persistent exacerbation of ER stress and inflammation in progressive NASH via the IRE1α/TRAF2 complex.
Journal Article