Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
105 result(s) for "Mengersen, Kerrie L"
Sort by:
Bayesian Estimation of Small Effects in Exercise and Sports Science
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a 'magnitude-based inference' approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
Many methods of spatial smoothing have been developed, for both point data as well as areal data. In Bayesian spatial models, this is achieved by purposefully designed prior(s) or smoothing functions which smooth estimates towards a local or global mean. Smoothing is important for several reasons, not least of all because it increases predictive robustness and reduces uncertainty of the estimates. Despite the benefits of smoothing, this attribute is all but ignored when it comes to model selection. Traditional goodness-of-fit measures focus on model fit and model parsimony, but neglect \"goodness-of-smoothing\", and are therefore not necessarily good indicators of model performance. Comparing spatial models while taking into account the degree of spatial smoothing is not straightforward because smoothing and model fit can be viewed as opposing goals. Over- and under-smoothing of spatial data are genuine concerns, but have received very little attention in the literature. This paper demonstrates the problem with spatial model selection based solely on goodness-of-fit by proposing several methods for quantifying the degree of smoothing. Several commonly used spatial models are fit to real data, and subsequently compared using the goodness-of-fit and goodness-of-smoothing statistics. The proposed goodness-of-smoothing statistics show substantial agreement in the task of model selection, and tend to avoid models that over- or under-smooth. Conversely, the traditional goodness-of-fit criteria often don't agree, and can lead to poor model choice. In particular, the well-known deviance information criterion tended to select under-smoothed models. Some of the goodness-of-smoothing methods may be improved with modifications and better guidelines for their interpretation. However, these proposed goodness-of-smoothing methods offer researchers a solution to spatial model selection which is easy to implement. Moreover, they highlight the danger in relying on goodness-of-fit measures when comparing spatial models.
Evaluation of spatial Bayesian Empirical Likelihood models in analysis of small area data
Bayesian empirical likelihood (BEL) models are becoming increasingly popular as an attractive alternative to fully parametric models. However, they have only recently been applied to spatial data analysis for small area estimation. This study considers the development of spatial BEL models using two popular conditional autoregressive (CAR) priors, namely BYM and Leroux priors. The performance of the proposed models is compared with their parametric counterparts and with existing spatial BEL models using independent Gaussian priors and generalised Moran basis priors. The models are applied to two benchmark spatial datasets, simulation study and COVID-19 data. The results indicate promising opportunities for these models to capture new insights into spatial data. Specifically, the spatial BEL models outperform the parametric spatial models when the underlying distributional assumptions of data appear to be violated.
Bayesian computation via empirical likelihood
Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.
Evaluating health facility access using Bayesian spatial models and location analysis methods
Floating catchment methods have recently been applied to identify priority regions for Automated External Defibrillator (AED) deployment, to aid in improving Out of Hospital Cardiac Arrest (OHCA) survival. This approach models access as a supply-to-demand ratio for each area, targeting areas with high demand and low supply for AED placement. These methods incorporate spatial covariates on OHCA occurrence, but do not provide precise AED locations, which are critical to the initial intent of such location analysis research. Exact AED locations can be determined using optimisation methods, but they do not incorporate known spatial risk factors for OHCA, such as income and demographics. Combining these two approaches would evaluate AED placement impact, describe drivers of OHCA occurrence, and identify areas that may not be appropriately covered by AED placement strategies. There are two aims in this paper. First, to develop geospatial models of OHCA that account for and display uncertainty. Second, to evaluate the AED placement methods using geospatial models of accessibility. We first identify communities with the greatest gap between demand and supply for allocating AEDs. We then use this information to evaluate models for precise AED location deployment. Case study data set consisted of 2802 OHCA events and 719 AEDs. Spatial OHCA occurrence was described using a geospatial model, with possible spatial correlation accommodated by introducing a conditional autoregressive (CAR) prior on the municipality-level spatial random effect. This model was fit with Integrated Nested Laplacian Approximation (INLA), using covariates for population density, proportion male, proportion over 65 years, financial strength, and the proportion of land used for transport, commercial, buildings, recreation, and urban areas. Optimisation methods for AED locations were applied to find the top 100 AED placement locations. AED access was calculated for current access and 100 AED placements. Priority rankings were then given for each area based on their access score and predicted number of OHCA events. Of the 2802 OHCA events, 64.28% occurred in rural areas, and 35.72% in urban areas. Additionally, over 70% of individuals were aged over 65. Supply of AEDs was less than demand in most areas. Priority regions for AED placement were identified, and access scores were evaluated for AED placement methodology by ranking the access scores and the predicted OHCA count. AED placement methodology placed AEDs in areas with the highest priority, but placed more AEDs in areas with more predicted OHCA events in each grid cell. The methods in this paper incorporate OHCA spatial risk factors and OHCA coverage to identify spatial regions most in need of resources. These methods can be used to help understand how AED allocation methods affect OHCA accessibility, which is of significant practical value for communities when deciding AED placements.
Spatially explicit structural equation modeling
Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.
Development of the Australian Cancer Atlas: spatial modelling, visualisation, and reporting of estimates
Background It is well known that the burden caused by cancer can vary geographically, which may relate to differences in health, economics or lifestyle. However, to date, there was no comprehensive picture of how the cancer burden, measured by cancer incidence and survival, varied by small geographical area across Australia. Methods The Atlas consists of 2148 Statistical Areas level 2 across Australia defined by the Australian Statistical Geography Standard which provide the best compromise between small population and small area. Cancer burden was estimated for males, females, and persons separately, with 50 unique sex-specific (males, females, all persons) cancer types analysed. Incidence and relative survival were modelled with Bayesian spatial models using the Leroux prior which was carefully selected to provide adequate spatial smoothing while reflecting genuine geographic variation. Markov Chain Monte Carlo estimation was used because it facilitates quantifying the uncertainty of the posterior estimates numerically and visually. Results The results of the statistical model and visualisation development were published through the release of the Australian Cancer Atlas ( https://atlas.cancer.org.au ) in September, 2018. The Australian Cancer Atlas provides the first freely available, digital, interactive picture of cancer incidence and survival at the small geographical level across Australia with a focus on incorporating uncertainty, while also providing the tools necessary for accurate estimation and appropriate interpretation and decision making. Conclusions The success of the Atlas will be measured by how widely it is used by key stakeholders to guide research and inform decision making. It is hoped that the Atlas and the methodology behind it motivates new research opportunities that lead to improvements in our understanding of the geographical patterns of cancer burden, possible causes or risk factors, and the reasons for differences in variation between cancer types, both within Australia and globally. Future versions of the Atlas are planned to include new data sources to include indicators such as cancer screening and treatment, and extensions to the statistical methods to incorporate changes in geographical patterns over time.
Mixtures : estimation and applications
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set.The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete.
Multivariate Bayesian meta-analysis: joint modelling of multiple cancer types using summary statistics
Background Cancer atlases often provide estimates of cancer incidence, mortality or survival across small areas of a region or country. A recent example of a cancer atlas is the Australian cancer atlas (ACA), that provides interactive maps to visualise spatially smoothed estimates of cancer incidence and survival for 20 different cancer types over 2148 small areas across Australia. Methods The present study proposes a multivariate Bayesian meta-analysis model, which can model multiple cancers jointly using summary measures without requiring access to the unit record data. This new approach is illustrated by modelling the publicly available spatially smoothed standardised incidence ratios for multiple cancers in the ACA divided into three groups: common, rare/less common and smoking-related. The multivariate Bayesian meta-analysis models are fitted to each group in order to explore any possible association between the cancers in three remoteness regions: major cities, regional and remote areas across Australia. The correlation between the pairs of cancers included in each multivariate model for a group was examined by computing the posterior correlation matrix for each cancer group in each region. The posterior correlation matrices in different remoteness regions were compared using Jennrich’s test of equality of correlation matrices (Jennrich in J Am Stat Assoc. 1970;65(330):904–12. https://doi.org/10.1080/01621459.1970.10481133 ). Results Substantive correlation was observed among some cancer types. There was evidence that the magnitude of this correlation varied according to remoteness of a region. For example, there has been significant negative correlation between prostate and lung cancer in major cities, but zero correlation found in regional and remote areas for the same pair of cancer types. High risk areas for specific combinations of cancer types were identified and visualised from the proposed model. Conclusions Publicly available spatially smoothed disease estimates can be used to explore additional research questions by modelling multiple cancer types jointly. These proposed multivariate meta-analysis models could be useful when unit record data are unavailable because of privacy and confidentiality requirements.