Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Mentler, Bernhard"
Sort by:
Production of highly oxygenated organic molecules (HOMs) from trace contaminants during isoprene oxidation
by
Fischer, Lukas
,
Hansel, Armin
,
Bernhammer, Anne-Kathrin
in
Analysis
,
Association reactions
,
Atmospheric conditions
2018
During nucleation studies from pure isoprene oxidation in the CLOUD chamber
at the European Organization for Nuclear Research (CERN) we observed
unexpected ion signals at m∕z = 137.133
(C10H17+) and m∕z = 81.070
(C6H9+) with the recently developed
proton-transfer-reaction time-of-flight (PTR3-TOF) mass spectrometer
instrument. The mass-to-charge ratios of these ion signals typically
correspond to protonated monoterpenes and their main fragment. We identified
two origins of these signals: first secondary association reactions of
protonated isoprene with isoprene within the PTR3-TOF reaction chamber and
secondly [4+2] cycloaddition (Diels–Alder) of isoprene inside the gas
bottle which presumably forms the favored monoterpenes limonene and
sylvestrene, as known from literature. Under our PTR3-TOF conditions used in
2016 an amount (relative to isoprene) of 2 % is formed within the
PTR3-TOF reaction chamber and 1 % is already present in the gas bottle.
The presence of unwanted cycloaddition products in the CLOUD chamber impacts
the nucleation studies by creating ozonolysis products as the corresponding
monoterpenes and is responsible for the majority of the observed highly
oxygenated organic molecules (HOMs), which in turn leads to a significant
overestimation of both the nucleation rate and the growth rate. In order to
study new particle formation (NPF) from pure isoprene oxidation under
relevant atmospheric conditions, it is important to improve and assure the
quality and purity of the precursor isoprene. This was successfully achieved
by cryogenically trapping lower-volatility compounds such as monoterpenes
before isoprene was introduced into the CLOUD chamber.
Journal Article
Synergistic HNO 3 -H 2 SO 4 -NH 3 upper tropospheric particle formation
2022
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)
. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region
. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles-comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO
-H
SO
-NH
nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.
Journal Article
Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature
2021
Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known that HOMs contribute to secondary organic aerosol (SOA) formation, including NPF, they have not been well studied in newly formed particles due to their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures (-50 and -30 .sup.\" C) and relative humidities (20 % and 60 %) relevant in the upper free troposphere. The measurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber. The particle chemical composition was analyzed by a thermal desorption differential mobility analyzer (TD-DMA) coupled to a nitrate chemical ionization-atmospheric pressure interface-time-of-flight (CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Our measurements revealed the presence of C.sub.8-10 monomers and C.sub.18-20 dimers as the major compounds in the particles (diameter up to ⼠100 nm). Particularly, for the system with isoprene added, C.sub.5 (C.sub.5 H.sub.10 O.sub.5-7) and C.sub.15 compounds (C.sub.15 H.sub.24 O.sub.5-10) were detected. This observation is consistent with the previously observed formation of such compounds in the gas phase. However, although the C.sub.5 and C.sub.15 compounds do not easily nucleate, our measurements indicate that they can still contribute to the particle growth at free tropospheric conditions. For the experiments reported here, most likely isoprene oxidation products enhance the growth of particles larger than 15 nm. Additionally, we report on the nucleation rates measured at 1.7 nm (J.sub.1.7 nm) and compared with previous studies, we found lower J.sub.1.7 nm values, very likely due to the higher α-pinene and ozone mixing ratios used in the present study.
Journal Article
Molecular understanding of new-particle formation from α -pinene between −50 and +25 °C
by
Quéléver, Lauriane L. J.
,
Tomé, António R.
,
Schobesberger, Siegfried
in
Environmental Sciences & Ecology
,
Meteorology & Atmospheric Sciences
2020
Highly oxygenated organic molecules (HOMs) contributesubstantially to the formation and growth of atmospheric aerosol particles,which affect air quality, human health and Earth's climate. HOMs are formedby rapid, gas-phase autoxidation of volatile organic compounds (VOCs) suchas α-pinene, the most abundant monoterpene in the atmosphere. Due totheir abundance and low volatility, HOMs can play an important role innew-particle formation (NPF) and the early growth of atmospheric aerosols,even without any further assistance of other low-volatility compounds suchas sulfuric acid. Both the autoxidation reaction forming HOMs and theirNPF rates are expected to be strongly dependent ontemperature. However, experimental data on both effects are limited.Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoorDroplets) chamber at CERN to address this question. In this study, we showthat a decrease in temperature (from +25 to −50 ∘C) results ina reduced HOM yield and reduced oxidation state of the products, whereas theNPF rates (J1.7 nm) increase substantially.Measurements with two different chemical ionization mass spectrometers(using nitrate and protonated water as reagent ion, respectively) providethe molecular composition of the gaseous oxidation products, and atwo-dimensional volatility basis set (2D VBS) model provides their volatilitydistribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strongreduction of the saturation vapor pressure of each oxidation state as thetemperature is reduced. Overall, the reduction in volatility withtemperature leads to an increase in the nucleation rates by up to 3orders of magnitude at −50 ∘C compared with 25 ∘C. Inaddition, the enhancement of the nucleation rates by ions decreases withdecreasing temperature, since the neutral molecular clusters have increasedstability against evaporation. The resulting data quantify how the interplaybetween the temperature-dependent oxidation pathways and the associatedvapor pressures affect biogenic NPF at the molecularlevel. Our measurements, therefore, improve our understanding of purebiogenic NPF for a wide range of tropospherictemperatures and precursor concentrations.
Journal Article
Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
by
Quéléver, Lauriane L. J.
,
Curtius, Joachim
,
Buenrostro Mazon, Stephany
in
aerosol formation
,
aerosols
,
CLOUD experiment
2018
Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Currnet results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from –25° C to 25° C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We report that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
Journal Article
Benchmarking carbon sequestration potentials in arable soils by on-farm research on innovative pioneer farms
by
Steiner, Philipp
,
Keiblinger, Katharina
,
Mentler, Axel
in
Agricultural ecosystems
,
Arable land
,
Carbon
2023
PurposeTackling the global carbon deficit through soil organic carbon (SOC) sequestration in agricultural systems has been a focal point in recent years. However, we still lack a comprehensive understanding of actual on-farm SOC sequestration potentials in order to derive effective strategies.MethodsTherefore, we chose 21 study sites in North-Eastern Austria covering a wide range of relevant arable soil types and determined SOC pool sizes (0–35 cm soil depth) in pioneer versus conventional management systems in relation to permanently covered reference soils. We evaluated physico-chemical predictors of SOC stocks and SOC quality differences between systems using Fourier-transform infrared (FTIR) spectroscopy.ResultsCompared to conventional farming systems, SOC stocks were 14.3 Mg ha− 1 or 15.7% higher in pioneer farming systems, equaling a SOC sequestration rate of 0.56 Mg ha− 1 yr− 1. Reference soils however showed approximately 30 and 50% higher SOC stocks than pioneer and conventional farming systems, respectively. Nitrogen and dissolved organic carbon stocks showed similar patterns. While pioneer systems could close the SOC storage deficit in coarse-textured soils, SOC stocks in medium- and fine-textured soils were still 30–40% lower compared to the reference soils. SOC quality, as inferred by FTIR spectra, differed between land-use systems, yet to a lesser extent between cropping systems.ConclusionsInnovative pioneer management alleviates SOC storage. Actual realized on-farm storage potentials are rather similar to estimated SOC sequestration potentials derived from field experiments and models. The SOC sequestration potential is governed by soil physico-chemical parameters. More on-farm approaches are necessary to evaluate close-to-reality SOC sequestration potentials in pioneer agroecosystems.
Journal Article
Non-target effects of a glyphosate-based herbicide on Common toad larvae ( Bufo bufo , Amphibia) and associated algae are altered by temperature
by
Baier, Fabian
,
Spangl, Bernhard
,
Bondar-Kunze, Elisabeth
in
Agricultural Science
,
Agrochemicals
,
Algae
2016
Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known.
We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L
as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L
) on larval development of Common toads (
, L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C).
Herbicide contamination reduced tail growth (-8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (-6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (-21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C.
These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose-response effect was seen, the presence of glyphosate was decisive for an effect, suggesting that the lowest observed effect concentration (LOEC) in our study was 1.5 mg a.e. glyphosate L
water. Overall, our findings also question the relevance of pesticide risk assessments conducted at standard temperatures.
Journal Article