Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
47
result(s) for
"Mentzas, Gregoris"
Sort by:
A Review of Data-Driven Decision-Making Methods for Industry 4.0 Maintenance Applications
by
Bousdekis, Alexandros
,
Mentzas, Gregoris
,
Lepenioti, Katerina
in
Algorithms
,
Augmented reality
,
Automation
2021
Decision-making for manufacturing and maintenance operations is benefiting from the advanced sensor infrastructure of Industry 4.0, enabling the use of algorithms that analyze data, predict emerging situations, and recommend mitigating actions. The current paper reviews the literature on data-driven decision-making in maintenance and outlines directions for future research towards data-driven decision-making for Industry 4.0 maintenance applications. The main research directions include the coupling of decision-making with augmented reality for seamless interfacing that combines the real and virtual worlds of manufacturing operators; methods and techniques for addressing uncertainty of data, in lieu of emerging Internet of Things (IoT) devices; integration of maintenance decision-making with other operations such as scheduling and planning; utilization of the cloud continuum for optimal deployment of decision-making services; capability of decision-making methods to cope with big data; incorporation of advanced security mechanisms; and coupling decision-making with simulation software, autonomous robots, and other additive manufacturing initiatives.
Journal Article
Review, analysis and synthesis of prognostic-based decision support methods for condition based maintenance
by
Bousdekis, Alexandros
,
Magoutas, Babis
,
Gregoris Mentzas
in
Advanced manufacturing technologies
,
Breakdowns
,
Decision analysis
2018
In manufacturing enterprises, maintenance is a significant contributor to the total company’s cost. Condition based maintenance (CBM) relies on prognostic models and uses them to support maintenance decisions based on the predicted condition of equipment. Although prognostic-based decision support for CBM is not an extensively explored area, there exist methods which have been developed in order to deal with specific challenges such as the need to cope with real-time information, to predict the health state of equipment and to continuously update maintenance-related recommendations. The current work aims at providing a literature review for prognostic-based decision support methods for CBM. We analyse the literature in order to identify combinations of methods for prognostic-based decision support for CBM, propose a practical technique for selecting suitable combinations of methods and set the guidelines for future research.
Journal Article
Persuasive Technologies for Sustainable Mobility: State of the Art and Emerging Trends
by
Magoutas, Babis
,
Bothos, Efthimios
,
Schrammel, Johann
in
Air pollution
,
Behavior
,
Bibliographic data bases
2018
In recent years, persuasive interventions for inducing sustainable mobility behaviours have become an active research field. This review paper systematically analyses existing approaches and prototype systems as well as field studies and describes and classifies the persuasive strategies used for changing behaviours in the domain of mobility and transport. We provide a review of 44 papers on persuasive technology for sustainable transportation aiming to (i) answer important questions regarding the effectiveness of persuasive technology for changing mobility behaviours, (ii) summarize and highlight trends in the technology design, research methods, strategies and theories, (iii) uncover limitations of existing approaches and applications, and (iv) suggest directions for future research.
Journal Article
A proactive decision making framework for condition-based maintenance
by
Bousdekis, Alexandros
,
Magoutas, Babis
,
Mentzas, Gregoris
in
Artificial intelligence
,
Breakdowns
,
Data management systems
2015
Purpose
– The purpose of this paper is to perform an extensive literature review in the area of decision making for condition-based maintenance (CBM) and identify possibilities for proactive online recommendations by considering real-time sensor data. Based on these, the paper aims at proposing a framework for proactive decision making in the context of CBM.
Design/methodology/approach
– Starting with the manufacturing challenges and the main principles of maintenance, the paper reviews the main frameworks and concepts regarding CBM that have been proposed in the literature. Moreover, the terms of e-maintenance, proactivity and decision making are analysed and their potential relevance to CBM is identified. Then, an extensive literature review of methods and techniques for the various steps of CBM is provided, especially for prognosis and decision support. Based on these, limitations and gaps are identified and a framework for proactive decision making in the context of CBM is proposed.
Findings
– In the proposed framework for proactive decision making, the CBM concept is enriched in the sense that it is structured into two components: the information space and the decision space. Moreover, it is extended in a way that decision space is further analyzed according to the types of recommendations that can be provided. Moreover, possible inputs and outputs of each step are identified.
Practical implications
– The paper provides a framework for CBM representing the steps that need to be followed for proactive recommendations as well as the types of recommendations that can be given. The framework can be used by maintenance management of a company in order to conduct CBM by utilizing real-time sensor data depending on the type of decision required.
Originality/value
– The results of the work presented in this paper form the basis for the development and implementation of proactive Decision Support System (DSS) in the context of maintenance.
Journal Article
Trustworthiness Optimisation Process: A Methodology for Assessing and Enhancing Trust in AI Systems
by
Fikardos, Mattheos
,
Mentzas, Gregoris
,
Lepenioti, Katerina
in
Accountability
,
Algorithms
,
Artificial intelligence
2025
The emerging capabilities of artificial intelligence (AI) and the systems that employ them have reached a point where they are integrated into critical decision-making processes, making it paramount to change and adjust how they are evaluated, monitored, and governed. For this reason, trustworthy AI (TAI) has received increased attention lately, primarily aiming to build trust between humans and AI. Due to the far-reaching socio-technical consequences of AI, organisations and government bodies have already started implementing frameworks and legislation for enforcing TAI, such as the European Union’s AI Act. Multiple approaches have evolved around TAI, covering different aspects of trustworthiness that include fairness, bias, explainability, robustness, accuracy, and more. Moreover, depending on the AI models and the stage of the AI system lifecycle, several methods and techniques can be used for each trustworthiness characteristic to assess potential risks and mitigate them. Deriving from all the above is the need for comprehensive tools and solutions that can help AI stakeholders follow TAI guidelines and adopt methods that practically increase trustworthiness. In this paper, we formulate and propose the Trustworthiness Optimisation Process (TOP), which operationalises TAI and brings together its procedural and technical approaches throughout the AI system lifecycle. It incorporates state-of-the-art enablers of trustworthiness such as documentation cards, risk management, and toolkits to find trustworthiness methods that increase the trustworthiness of a given AI system. To showcase the application of the proposed methodology, a case study is conducted, demonstrating how the fairness of an AI system can be increased.
Journal Article
From mobility patterns to behavioural change: leveraging travel behaviour and personality profiles to nudge for sustainable transportation
by
Magoutas Babis
,
Bothos Efthimios
,
Bradesko Luka
in
Acceptance
,
Human behavior
,
Intelligent systems
2020
Rendering transport behaviours more sustainable is a pressing issue of our times. In this paper, we rely on the deep penetration of mobile phones in order to influence citizens’ behavior through data-driven mobility and persuasive profiles. Our proposed approach aims to nudge users on a personalized level in order to change their mobility behavior and make more sustainable choices. To achieve our goal, first we leverage pervasive mobile sensing to uncover users’ mobility patterns and use of transportation modes. Second, we construct users’ persuadability profiles by considering their personality and mobility behavior. With the use of the aforementioned information we generate personalized interventions that nudge users to adopt sustainable transportation habits. These interventions rely on persuasive technologies and are embedded in a route planning application for smartphones. A pilot study with 30 participants using the system for 6 weeks provided fairly positive evaluation results in terms of the acceptance of our approach and revealed instances of behavioural change.
Journal Article
A Unified Machine Learning Framework for Li-Ion Battery State Estimation and Prediction
by
Bousdekis, Alexandros
,
Mentzas, Gregoris
,
Lepenioti, Katerina
in
Artificial intelligence
,
Data models
,
Data processing
2025
The accurate estimation and prediction of internal states in lithium-ion (Li-Ion) batteries, such as State of Charge (SoC) and Remaining Useful Life (RUL), are vital for optimizing battery performance, safety, and longevity in electric vehicles and other applications. This paper presents a unified, modular, and extensible machine learning (ML) framework designed to address the heterogeneity and complexity of battery state prediction tasks. The proposed framework supports flexible configurations across multiple dimensions, including feature engineering, model selection, and training/testing strategies. It integrates standardized data processing pipelines with a diverse set of ML models, such as a long short-term memory neural network (LSTM), a convolutional neural network (CNN), a feedforward neural network (FFNN), automated machine learning (AutoML), and classical regressors, while accommodating heterogeneous datasets. The framework’s applicability is demonstrated through five distinct use cases involving SoC estimation and RUL prediction using real-world and benchmark datasets. Experimental results highlight the framework’s adaptability, methodological transparency, and robust predictive performance across various battery chemistries, usage profiles, and degradation conditions. This work contributes to a standardized approach that facilitates the reproducibility, comparability, and practical deployment of ML-based battery analytics.
Journal Article
Permissioned blockchain network for proactive access control to electronic health records
by
Verginadis, Yiannis
,
Mentzas, Gregoris
,
Psarra, Evgenia
in
Access control
,
Blockchain
,
Computer Security - standards
2024
Background
As digital healthcare services handle increasingly more sensitive health data, robust access control methods are required. Especially in emergency conditions, where the patient’s health situation is in peril, different healthcare providers associated with critical cases may need to be granted permission to acquire access to Electronic Health Records (EHRs) of patients. The research objective of this work is to develop a proactive access control method that can grant emergency clinicians access to sensitive health data, guaranteeing the integrity and security of the data, and generating trust without the need for a trusted third party.
Methods
A contextual and blockchain-based mechanism is proposed that allows access to sensitive EHRs by applying prognostic procedures where information based on context, is utilized to identify critical situations and grant access to medical data. Specifically, to enable proactivity, Long Short Term Memory (LSTM) Neural Networks (NNs) are applied that utilize patient’s recent health history to prognose the next two-hour health metrics values. Fuzzy logic is used to evaluate the severity of the patient’s health state. These techniques are incorporated in a private and permissioned Hyperledger-Fabric blockchain network, capable of securing patient’s sensitive information in the blockchain network.
Results
The developed access control method provides secure access for emergency clinicians to sensitive information and simultaneously safeguards the patient’s well-being. Integrating this predictive mechanism within the blockchain network proved to be a robust tool to enhance the performance of the access control mechanism. Furthermore, the blockchain network of this work can record the history of who and when had access to a specific patient’s sensitive EHRs, guaranteeing the integrity and security of the data, as well as recording the latency of this mechanism, where three different access control cases are evaluated. This access control mechanism is to be enforced in a real-life scenario in hospitals.
Conclusions
The proposed mechanism informs proactively the emergency team of professional clinicians about patients’ critical situations by combining fuzzy and predictive machine learning techniques incorporated in the private and permissioned blockchain network, and it exploits the distributed data of the blockchain architecture, guaranteeing the integrity and security of the data, and thus, enhancing the users’ trust to the access control mechanism.
Journal Article
Context-Based, Predictive Access Control to Electronic Health Records
by
Verginadis, Yiannis
,
Mentzas, Gregoris
,
Psarra, Evgenia
in
Access control
,
Artificial intelligence
,
Blockchain
2022
Effective access control techniques are in demand, as electronically assisted healthcare services require the patient’s sensitive health records. In emergency situations, where the patient’s well-being is jeopardized, different healthcare actors associated with emergency cases should be granted permission to access Electronic Health Records (EHRs) of patients. The research objective of our study is to develop machine learning techniques based on patients’ time sequential health metrics and integrate them with an Attribute Based Access Control (ABAC) mechanism. We propose an ABAC mechanism that can yield access to sensitive EHRs systems by applying prognostic context handlers where contextual information, is used to identify emergency conditions and permit access to medical records. Specifically, we use patients’ recent health history to predict the health metrics for the next two hours by leveraging Long Short Term Memory (LSTM) Neural Networks (NNs). These predicted health metrics values are evaluated by our personalized fuzzy context handlers, to predict the criticality of patients’ status. The developed access control method provides secure access for emergency clinicians to sensitive information and simultaneously safeguards the patient’s well-being. Integrating this predictive mechanism with personalized context handlers proved to be a robust tool to enhance the performance of the access control mechanism to modern EHRs System.
Journal Article
A Recommender System for Mobility-as-a-Service Plans Selection
by
Arnaoutaki, Konstantina
,
Magoutas, Babis
,
Bothos, Efthimios
in
Cities
,
Public transportation
,
Recommender systems
2021
Transportation and mobility in smart cities are undergoing a grave transformation as new ways of mobility are introduced to facilitate seamless traveling, addressing travelers’ needs in a personalized manner. A novel concept that has been recently introduced is Mobility-as-a-Service (MaaS), where mobility services are bundled in MaaS Plans and offered to end-users through a single digital platform. The present paper introduces a recommender system for MaaS Plans selection that supports travelers to select bundles of mobility services that fit their everyday transportation needs. The recommender filters out unsuitable plans and then ranks the remaining ones on the basis of their similarity to the users’ characteristics, habits and preferences. The recommendation approach is based on Constraint Satisfaction Problem (CSP) formalisms combined with cosine similarity techniques. The proposed method was evaluated in experimental settings and was further embedded in real-life pilot MaaS applications. The experimental results showed that the proposed approach provides lists of MaaS PlanMaaS Plans that users would choose in a real-life MaaS setting, in most of the cases. Moreover, the results of the real-life pilots showed that the majority of the participants chose an actual MaaS Plan from the top three places of the recommendation lists.
Journal Article